簡易檢索 / 詳目顯示

研究生: 江彥勲
Yen-Hsun Chiang
論文名稱: 應用主動式濾波器於穩態電力品質之綜合補償
Comprehensive Compensation of Steady State Power Quality by Using Active Filter
指導教授: 辜志承
Jyh-Cherng Gu
口試委員: 楊金石
Jin-shyr Yang
吳啟瑞
Chi-Jui Wu
楊明達
Ming-Ta Yang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 157
中文關鍵詞: 選擇性補償主動式濾波器瞬時無效功率理論對稱分量法諧波補償
外文關鍵詞: Selective Compensation, Active Power Filter, Instantaneous Reactive Power Theory, Method of Symmetrical Components, Compensation of harmonics
相關次數: 點閱:244下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著電力電子技術的迅速發展以及現代工業發展的需要,電力電子元件受到廣泛使用,電網中出現了大量的非線性負載。這些負載如二極體整流器、電動機驅動器、電源供應器及照明器具等設備,在節省能源、提高工作效率與改善人們生活品質方面有著舉足輕重的作用。但同時由於這些負載非線性及多樣性之特點,使得大量的諧波和無效電流注入電網中,嚴重影響電網的供電品質與用戶設備的正常運行。為改善電力品質,近年來,主動式濾波器因能夠對隨時變化之負載諧波和無效電流進行快速補償而逐漸受到重視。
    本論文旨在模擬實現三相並聯型主動式濾波器(Active Filter)之負載側綜合補償策略,提出以瞬時無效功率法結合對稱分量法之瞬時對稱分量功率法,完成不同負載條件下之電流補償。並且考慮主動式濾波器之有限輸出容量,進而加入選擇性補償策略,決定諧波、不平衡及無效功率三者之補償優先度,以呈現出本論文提出之方法能夠有效抑制諧波並提升電力品質與主動式濾波器之工作效率。文中將使用Matlab/Simulink 模擬系統架構,在不同模擬情境下進行測試,以全域補償及選擇性補償結果驗證本論文方法之可實性。


    With the rapid development of power electronics technology and the needs of modern industrial development, power electronic components are widely used, and a large number of non-linear loads appear in the power grid. These loads, such as diode rectifiers, motor drives, power supplies, and lighting fixtures, play an important role in saving energy, improving work efficiency, and improving people's quality of life. However, due to the nonlinearity and diversity of these loads, a large amount of harmonics and ineffective currents are injected into the power grid, which seriously affects the power quality of the power grid and the normal operation of the user equipment. In order to improve power quality, in recent years, active power filters have received increasing attention due to the ability to quickly compensate for load harmonics and ineffective currents that change over time.
    This thesis aims to simulate the load side comprehensive compensation strategy of three-phase parallel active filter (Active Filter), and proposes the instantaneous symmetrical component power method combined with the symmetrical component method by instantaneous reactive power method to complete the current compensation under different load conditions. And considering the finite output capacity of the active filter, and then adding a selective compensation strategy to determine the compensation priority of harmonics, unbalance and reactive power, in order to demonstrate that the method proposed in this paper can effectively suppress harmonics and increase power quality and active filter efficiency. In this paper, Matlab/Simulink will be used to test in different simulation scenarios, and the feasibility of this paper method will be verified by global compensation and selective compensation results.

    中文摘要 I Abstract III 致謝 V 目錄 VII 圖目錄 XI 表目錄 XIV 第一章 緒論 1 1.1 研究背景與動機 1 1.2 研究方法與步驟 5 1.3 論文架構 5 第二章 電力品質干擾現象與現行管制標準 7 2.1 前言 7 2.2 電力品質概論 7 2.3 三相不平衡 13 2.3.1 三相不平衡之成因 13 2.3.2 三相不平衡之影響 13 2.3.3 三相不平衡之改善方法 15 2.3.4 三相不平衡指標與管制標準 16 2.4 諧波 18 2.4.1 諧波之涵義及相關公式 19 2.4.2 諧波來源及其影響 21 2.4.3 諧波之改善方法 23 2.4.4 諧波管制標準 25 2.5 電壓閃爍 29 2.5.1 電壓閃爍之涵義 29 2.5.2 電壓閃爍評估指標 30 2.5.3 電壓閃爍管制標準 31 2.6 功率因數 33 2.6.1 功率因數之涵義 33 2.6.2 功率因數之影響 35 2.6.3 功率因數修正及國內外功率因數計收規定 36 2.7 本章小結 38 第三章 濾波器之基本原理與架構 39 3.1 前言 39 3.2 被動式濾波器 39 3.2.1 調諧電抗電容器 39 3.2.2 單調諧濾波器 40 3.2.3 雙調諧濾波器 42 3.2.4 靜態虛功補償器 43 3.3 主動式濾波器 44 3.3.1 儲能元件類別 45 3.3.2 連接方式類別 46 3.3.3 控制方式類別 47 3.3.4 電流-電壓特性曲線 51 3.3.5 補償電流計算方式 53 3.4 混合式濾波器 54 3.4.1 並聯型 55 3.4.2 串聯型 56 3.4.3 串-並聯型 57 3.4.4 電壓-電流特性曲線 57 3.5 各類型濾波器比較 59 3.6 本章小結 60 第四章 穩態電力品質之綜合補償 61 4.1 前言 61 4.2 並聯型主動式濾波器之架構與工作原理 61 4.3 補償電流計算 63 4.3.1 克拉克座標軸轉換 63 4.3.2 瞬時無效功率法 68 4.3.3 瞬時對稱分量功率法 74 4.4 選擇性補償策略 78 4.5 直流鏈電壓之控制 81 4.6 輸出電流控制方式 82 4.7 控制方塊圖 83 4.8 本章小結 85 第五章 模擬驗證與案例分析 87 5.1 前言 87 5.2 模擬系統架構與參數 87 5.3 瞬時無效功率法驗證 92 5.3.1 模擬情境1 92 5.3.2 模擬情境2 94 5.4 瞬時對稱分量功率法驗證 97 5.4.1 模擬情境1 97 5.4.2 模擬情境2 103 5.5 選擇性補償模式案例分析 110 5.5.1 模擬情境3 110 5.5.2 模擬情境4 115 5.6 使用者自訂模式案例分析 119 5.6.1 模擬情境5 119 5.6.2 模擬情境6 122 5.7 本章小結 125 第六章 結論與未來研究方向 127 6.1 結論 127 6.2 未來研究方向 128 參考文獻 131

    [1] C. Y. Liu, X. Lei, S. L. Hu, H. D. Zhou and X. B. Fan, “Research of Comprehensive Application of Intelligent Low-Voltage Power Distribution Units in Improving Power Quality,” IEEE China International Conference on Electricity Distribution, 17-19, Sept, 2018.
    [2] Arindam Ghosh, Avinash Joshi, "A New Approach to LoadBalancing and Power Factor Correction in Power Distribution System," IEEE Transactions on Power Delivery, vol. 15, no. 1, pp. 417-422, Jan. 2000.
    [3] K. Al-Haddad, "Power quality issues under constant penetration rate of renewable energy into the electric network", 2010 14th International Power Electronics and Motion Control Conference (EPE/PEMC), vol. 6, no. 8, pp. S11–39-S11–49, Sept. 2010.
    [4] I.I. Abdalla, K.S.R. Rao, N. Perumal, "Harmonics mitigation and power factor correction with a modern three-phase four-leg shunt active power filter", 2010 IEEE International Conference on Power and Energy (PECon), pp. 156-161, Dec. 1. 2010.
    [5] B. Singh, K. Al-Haddad, A. Chandra, "A review of active filters for power quality improvement", IEEE Transactions on Industry Applications, no. 5, pp. 960-971, 1999.
    [6] J.C. Das, “Passive filters—potentialities and limitations,” IEEE Transactions on Industry Applications, 40(1), 232-241, 2004.
    [7] H. Akagi, “Trends in Active Power Line Conditioners,” IEEE Transactions on Industry Applications, Vol. 9, No. 3, pp. 263-268, 1994.
    [8] H. Akagi, “New Trends in Active Filters for Power Conditioning,” IEEE Transactions on Industry Applications, Vol. 32, No. 6, pp. 1312-1322, 1996.
    [9] K. Karthi, R. Radhakrishnan, J. Muruganantha Baskaran and Louis Sam Titus, “Load compensation with hysteresis current controlled SAPF under unbalanced mains voltage and nonlinear load conditions,” IEEE PES Asia-Pacific Power and Energy Engineering Conference, 8-10, Nov, 2017.
    [10] R.N. Beres, X. Wang, M. Liserre, F. Blaabjerg, C.L. Bak, “A review of passive power filters for three-phase grid connected voltage source converters,” IEEE Journal of Emerging and Selected Topics in Power Electronics, 4(1), 54–69, 2016.
    [11] 張立、林清一,現代電力電子技術,全華科技圖書股份有限公司,民國八十七年。
    [12] N. Mohan, T. M. Undeland and W. P. Robbins, Power Electronics: Converter, Applications and Design, John Wiley and Sons, Canada, 1995.
    [13] A. G. Pedder, A. D. Brown, J. N. Ross and A. C. Williams, “A Parallel Connected Active Filter for the Redution of Supply Current Distortion,” IEEE Transactions on Industrial Electronics, Vol. 47, No. 5, pp. 1108-1117, 2000.
    [14] F. Z. Peng, H. Akagi and A. Nabae, “A New Approach to Harmonic Compensation in Power System – Acombined System of Shunt Passive and Series Active Filters,” IEEE Transactions on Industry Applications, Vol. 26, No. 6, pp. 983-990, 1990.
    [15] H. Fujita and H. Akagi, “A Practical Approach to Harmonic Compensation in Power System – Series Connection of Passive and Series Active Filters,” IEEE Transactions on Industry Applications, Vol. 27, No. 6, pp. 1020-1025, 1991.
    [16] C. Y. Hsu and H. Y. Wu, “A New Single-Phase Active Piower Filter with Reduced Energy-Storage Capacity,” IEEE Proceedings-Electric Power Applications, Vol. 143, No. 1, pp. 25-30, 1996.
    [17] H. Akagi and H. Fujita, “A New Power Line Conditioner for Harmonic Compensation in Power Systems,” IEEE Transactions on Power Delivery, Vol. 10,No. 3, pp. 1570-1576, 1995.
    [18] H. L. Jou, “Performance Comparison of the Three-Phase Active-Power-Filter Algorithms,” IEEE Proceedings-generation, Transmission and Distribution, Vol. 142, No. 6, pp. 646-652, 1995.
    [19] Georges Rizk, Stéphanie Salameh, Hadi Y. Kanaan, Elias A. Rachid, “Design of passive power filters for a three-phase semi-controlled rectifier with typical loads,” 2014 9th IEEE Conference on Industrial Electronics and Applications, 9-11, June, 2014.
    [20] 廖聰明、林倉全,「模組化主動電力濾波器之研製」,中華民國第二十屆電力工程研討會, pp. 36-41, 1999.
    [21] EC Sekaran, NA Ponna, C. Palanisamy, "Analysis and simulation of a new shunt active power filter using cascaded multilevel inverter", Journal of Electric Engineering, vol. 58, no. 5, pp. 241-249, 2007.
    [22] I. A. Izzeldin, K.S. Rama Rao, N. Perumal, "Seven-level cascaded inverter based shunt active power filter in four-wire distribution system", 2011 IEEE Ninth International Conference on Power Electronics and Drive Systems (PEDS), no. 5-8, pp. 676-681, Dec. 2011.
    [23] Biricik Samet, Komurcugil Hasan, "Three-level hysteresis current control strategy for three-phase four-switch shunt active filters", IET Power Electron., vol. 9, no. 8, pp. 1732-1740, 2016.
    [24] O. Vodyakho, T. Kim, S. Kwak, "Three-level inverter based active power filter for the three-phase four-wire system", IEEE Power Electronics Specialists Conference, pp. 1874-1880, 2008.
    [25] O Vodyakho, CC. Mi, "Three-Level Inverter-Based Shunt Active Power Filter in Three-Phase Three-Wire and Four-Wire Systems", IEEE Transactions on Power Electronics, vol. 24, no. 5, pp. 1350-1363.
    [26] H. Akagi, Y. Kanazawa and A. Nabae, “Instantaneous Reactive Power Compensators Comprising Switching Devices without Energy Storage Components,” IEEE Transactions on Industry Applications, Vol. 20, No. 3, pp. 625-630, 1984.
    [27] T. Furuhashi, S. Okuma and Y. Uchikawa, “A study on the Theory of Instantaneous Reactive Power,” IEEE Transactions on Industrial Electronics, Vol. 37, No. 1, pp. 86-90, 1990.
    [28] F. Z. Peng, H. Akagi and A.Nabae, “A sudy of Active Power Filters Using Quad-Series Voltage-Source PWM Converters for Harmonic Compensation,” IEEE Transactions on Power Electronics, Vol. 5, No. 1, pp. 9-15, 1990.
    [29] H. Akagi, A. Nabae and S. Atoh, “Control Strategy of Active Power Filters Using Multiple Voltage-Source PWM Converters,” IEEE Transactions on Industry Applications, Vol. 22, No. 3, pp. 460-465, 1986.
    [30] M. Aleenejad, H. Mahmoudi, P. Moamaei, and R. Ahmadi, “A New Fault-Tolerant Strategy Based on a Modified Selective Harmonic Technique for Three-Phase Multilevel Converters with a Single Faulty Cell,” IEEE Trans. Power. Electron., Vol. 31, no. 4, pp. 3141–3150, 2016.
    [31] J. He, Y. W. Li, R. Wang, and C.Wang, “A Measurement Method to Solve a Problem of Using DG Interfacing Converters for Selective Load Harmonic Filtering,” IEEE Trans. Power. Electron., Vol. 31, No. 3, pp. 1852–1856, 2016.
    [32] Y. Zhang, Y. W. Li, N. R. Zargari, and Z. Cheng, “Improved Selective Harmonics Elimination Scheme with Online Harmonic Compensation for High-Power PWM Converters,” IEEE Trans. Power. Electron., Vol. 30, No. 7, pp. 3508–3517, 2015.
    [33] X. Zhou, F. Tang, P. C. Loh, X. Jin, and W. Cao, “Four-Leg Converters with Improved Common Current Sharing and Selective Voltage-Quality Enhancement for Islanded Microgrids,” IEEE Trans. Power Del, Vol. 31, No. 2, pp. 522–531, 2016.
    [34] B. Singh, V. Verma, and J. Solanki, “Neural Network-Based Selective Compensation of Current Quality Problems in Distribution System,” IEEE Trans. Ind. Electron., Vol. 54, No. 1, pp. 53–60, 2007.
    [35] B. Singh and V. Verma, “Selective Compensation of Power-Quality Problems Through Active Power Filter by Current Decomposition,” IEEE Trans. Power Del., Vol. 23, No. 2, pp. 792–799, 2008.
    [36] S. Orts-Grau et al., “Selective Compensation in Four-Wire Electric Systems Based on a New Equivalent Conductance Approach,” IEEE Trans. Ind. Electron., Vol. 56, No. 8, pp. 2862–2874, 2009.
    [37] S. Orts-Grau et al., “Selective Shunt Active Power Compensator Applied in Four-Wire Electrical Systems Based on IEEE Std. 1459,” IEEE Trans. Power Del, Vol. 23, No. 4, pp. 2563–2574, 2008.
    [38] J. C. Alfonso-Gil, E. P´erez, C. Arino, and H. Beltran, “Optimization Algorithm for Selective Compensation in a Shunt Active Power Filter,” IEEE Trans. Ind. Electron, Vol. 62, No. 6, pp. 3351–3361, 2015.
    [39] P. C. Krause, “The Method of Symmetrical Components Derived by Reference Frame Theory” IEEE Transactions on Power Apparatus and Systems, Vol. PAS-104, No. 6, 1985.
    [40] 江榮城,電力品質實務(一),台北,全華科技圖書股份有限公司,2000。
    [41] 李廷祥,「目前的電力問題:電力品質」,第十四屆電力工程研討會演講稿,第18頁,1993。
    [42] Electromagnetic Compatibility (EMC), Part 3: Limits-Section 3: Limitation of Voltage Fuctuations and Flicker in Low-Voltage Power Supply Systems for Equipment With Rated Current 16A, IEC 61000-3-3, 1994.
    [43] Ronald G. Harley, Elham B. Makram, "Starting Transients of Induction Motors Connected to Unbalanced Networks", Electric Power System Research, Vol. 17, pp. 189-197, 1989.
    [44] N. Mohan, T. M. Undeland and W. P. Robbins, Power Eectronics Converter, Applications and Design, 2nd ed, John Wiley & Sons, Inc, New York , 1995
    [45] R.C. Dugam, M.F. McGranaghan and H.W. Beaty, Electrical Power System Quality, McGraw-Hill, New York, 1996
    [46] 鐘崇訓,「使用FPGA晶片之電壓閃爍計算」,博士學位論文,國立台灣科技大學電機工程系,2010。
    [47] L. K. Haw, M. S. Dahidah and H. A. F. Almurib, “A New Reactive Current Reference Algorithm for the STATCOM System Based on Cascaded Multilevel Inverters,” IEEE Trans. Power Electron, Vol. 30, No. 7, pp. 3577–3588, 2015.
    [48] J. A. Munoz, J. R. Espinoza, C. R. Baier, L. A. Moran, J. I. Guzman and V. M. Cardenas, “Decoupled and Modular Harmonic Compensation for Multilevel STATCOMs,” IEEE Trans. Ind. Electron, Vol. 61, No. 6, pp. 2743–2753, 2014.
    [49] V. Soares and P. Verdelho, “An Instantaneous Active and Reactive Current Component Method for Active Filters,” IEEE Trans. Power Electron, Vol. 15, No. 4, pp. 660–669, 2000.
    [50] T. L. Lee, S. H. Hu and Y. H. Chan, “D-STATCOM with Positive-Sequence Admittance and Negative-Sequence Conductance to Mitigate Voltage Fluctuations in High-Level Penetration of Distributed-Generation Systems,” IEEE Trans. Ind. Electron, Vol. 60, No. 4, pp. 1417–1428, 2013.
    [51] M. Hagiwara, R. Maeda and H. Akagi, “ Negative-Sequence Reactive-Power Control by a PWM STATCOM Based on a Modular Multilevel Cascade Converter (MMCC-SDBC),” IEEE Trans. Ind. Appl. Vol. 48, No. 2, pp. 720–729, 2012.
    [52] S. Bhattacharya and D. Divan, “Active Filter Solutions For Utility Interface of Industrial Loads,” in Proceedings of the 1996 International conference on Power Electronics, Drives and Energy Systems for Industrial Growth, vol. 2, pp. 1078-1084, 1996.
    [53] K. Wada, H. Fujita, and H. Akagi, “Considerations of a shunt active filter based on voltage detection for installation on a long distribution feeder,” IEEE Trans. Ind. Appl., vol. 38, no. 4, pp. 1123–1130, Jul./Aug. 2002.
    [54] S. Bhattacharya and D. Divan, “Design and implementation of a hybrid series active filter system,” in IEEE 26th Annual Power Electronics Specialists Conference, pp. 189–195, 1995.
    [55] H. Fujita, T. Yamasaki, and H. Akagi, “A hybrid active filter for damping of harmonic resonance in industrial power systems,” IEEE Trans. Power Electron., vol. 15, no. 2, pp. 215–222, Mar. 2000.
    [56] D. Detjen, J. Jacobs, R. W. De Doncker, and H.-G. Mall, “A new hybrid filter to dampen resonances and compensation harmonic currents in industrial power systems with power factor correction equipment,” IEEE Trans. Power Electron., vol. 16, no. 6, pp. 821–827, Nov. 2001.
    [57] R. Inzunza and H. Akagi, “A 6.6-kV transformerless shunt hybrid active filter for installation on a power distribution system,” IEEE Trans. Power Electron., vol. 20, no. 4, pp. 893–900, July 2005.
    [58] H. Akagi, S. Srianthumrong and Y. Tamai, “Comparison in circuit configuration and filtering performance between hybrid and pure shunt active filters,” in IEEE Industry Applications Conference 38th IAS Annual Meeting, pp. 1195–1202, 2003.
    [59] S. Srianthumrong and H. Akagi, “A medium-voltage transformerless ac/dc power conversion system consisting of a diode rectifier and a shunt hybrid filter,” IEEE Trans. Ind. Appl., vol. 39, no. 3, pp. 874–882, May/Jun. 2003.
    [60] L. Wang, M. C. Wang and C, S, Lam, “Adaptive Hybrid Active Power Filters,” Springer Nature Singapore Pte Ltd, pp. 19–48, 2019.
    [61] B. Kalyan Kumar, “Power System Stability and Control,” Department of Electrical Engineering, Indian Institute of Technology Madras, Chennai, India, 2014.

    無法下載圖示 全文公開日期 2024/07/05 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 2024/07/05 (國家圖書館:臺灣博碩士論文系統)
    QR CODE