簡易檢索 / 詳目顯示

研究生: 朱肇易
Chao-Yi Chu
論文名稱: 利用自發性放射光源之雙向傳輸遠端泵激分波多工被動光網路架構
Remotely Pumped WDM PON Systems using ASE Sources for Bidirectional Transmission
指導教授: 李三良
San-Liang Lee
口試委員: 廖顯奎
Shien-Kuei Liaw
曹恆偉
Hen-Wai Tsao
楊淳良
Chun-Liang Yang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 73
中文關鍵詞: 分波多工被動光網路自發性放射光源反射式電致吸收調變器遠端泵激
外文關鍵詞: WDM-PON, ASE, REAM, remotely pumped
相關次數: 點閱:439下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文提出一植基於自發放射光源與遠端泵激之分波多工被動光網路系統,並提供了上下行各2.5Gb/s雙向傳輸。此架構利用自發放射光源取代傳統使用的雷射陣列光源當作上行和下行訊號光源,將寬頻譜光源在局端與遠端利用既有分波多工被動光網路架構中的分波多工器將自發放射光源做頻譜分配,並將其調變;而在用戶端使用反射式調變器將上行光源載上訊號,為達到雙向傳輸距離25公里,必須利用大有效面積光纖(LEAF)來降低色散效應對系統的影響。
由於自發放射光源提供每一通道的功率較低,再加上被動元件及調變造成的功率損失,因此,利用遠端泵激架構特性,在遠端補償光路損失,且可提升上下行傳輸的訊雜比。實驗結果顯示,利用自發放射光源作為上下行光源可達到上下行各8個通道具有2.5Gb/s之雙向傳輸,且傳輸25公里,其誤碼率可達10-9之程度。


We propose and experimentally demonstrate the design of a remotely pumped WDM-PON architecture to provide 2.5-Gb/s bidirectional transmission with potential low-cost configuration. In this scheme, we use amplified spontaneous emission (ASE) light source with broad optical spectrum for downstream and upstream transmission. The ASE light source spectrum is sliced by the arrayed waveguide grating (AWG) at the central office (CO) and remote node (RN) and each spectrum slice is used to carrier the signal of a downstream or upstream channel. A reflected electro-absorption modulator (REAM) is used to encode the upstream signals and achieve colorless operation. An electro-absorption modulator (EAM) is used to encode the downstream signals. In order to achieve a transmission up to 25 km distance, a low-dispersion fiber like a larger effective area fiber (LEAF) is used to reduce the dispersion effect.
Due to the low power density of ASE source and the insertion loss caused by passive components and modulation, a remotely pumped erbium-doped fiber amplifier (RP-EDFA) is employed to provide extra gain to both downstream signals and upstream signals. The RP-EDFA can compensate the propagation loss and spectral slicing loss. The experimental results show that the downstream and upstream transmission of 2.5Gb/s data rate for each 8 channels can achieve a bit error rate (BER) of lower than 10-9 over 25 km of distance.

大綱 I Abstract II 誌謝 III 目錄 V 圖目錄 VIII 表目錄 X 第一章 導論 1 1.1 前言 1 1.2 被動光網路介紹 2 1.3 文獻探討與回顧 5 1.4 研究動機 7 1.5 論文架構 9 第二章 ASE光源現有技術及架構介紹 10 2.1 前言 10 2.2 ASE光源傳輸於不同架構之介紹 11 2.2.1 ASE光源上下行利用RSOA調變達到無色技術於WDM-PON系統 11 2.2.2 ASE光源下行利用鎖模技術傳輸於WDM-PON系統 12 2.2.3 利用拉曼放大泵激之殘餘光源產生ASE光源應用上下行傳輸於WDM-PON系統 14 2.2.4 ASE光源利用遠端泵技術達到上行傳輸速率為1.25Gb/s 16 2.3 系統架構設計概念 19 第三章 元件特性及理論介紹 23 3.1 前言 23 3.2 分波多工被動光網路 23 3.3 摻鉺光纖放大器原理及特性 27 3.3.1 摻鉺光纖放大器之原理 27 3.3.2 摻鉺光纖放大器特性量測 29 3.4 拉曼放大器原理及特性 33 3.5 調變器的介紹及選擇 35 3.5.1 基本原理介紹 35 3.5.2 調變器特性量測 36 3.6 頻譜分割技術之簡介 38 3.7 頻譜分割的ASE光源在傳輸系統中的問題及原理 39 3.7.1 影響ASE光源的訊號品質因素 39 3.7.2 色散原理介紹 42 3.7.3 電濾波器介紹及選擇 43 第四章 系統設計分析及量測結果 45 4.1 前言 45 4.2 系統設計分析 46 4.2.1 探討傳輸速率、線寬、傳輸距離及色散之相互影響 46 4.2.2 探討傳輸通道數目與傳輸速率之關係 52 4.3 傳輸系統的實驗架構與量測 53 4.3.1 下行傳輸2.5Gb/s在LEAF上之量測結果 53 4.3.2 上行傳輸2.5Gb/s在LEAF上之量測結果 57 4.3.3 傳輸2.5Gb/s在標準單模光纖上的距離限制 59 4.4 多波長下行傳輸探討 62 第五章 結論 65 5.1 成果與討論 65 5.2 未來方向研究 66 參考文獻 67 作者簡介 74

[1] Y. Luo, X. Zhou, F. Effenberger, X. Yan, G. Peng, Y. Qian, Y. Ma, “Time-and Wavelength-Division Multiplexed Passive Optical Network (TWDM-PON) for Next-Generation PON Stage 2 (NG-PON2),” Journal of Lightwave Technology, Vol.31, pp. 587-593, 2013.
[2] A. Bianco, T. Bonald, D. Cuda , R. M. Indre, “Cost, power consumption and performance evaluation of metro networks,” Journal of Optical Communications and Networking, Vol. 5, pp.81-91, 2013.
[3] H. Jin, K. Peng, J. Song, “Bit Division Multiplexing for Broadcasting,” IEEE Broadcasting, 2013.
[4] L. Yi, Z. Li, M, Bi, W. Wei, W. Hu, “Symmetric 40-Gb/s TWDM-PON With 39-dB Power Budget,” IEEE Photonics Technology Letters, Vol.25, No.7, 2013.
[5] A. Buttaboni, M. De Andrade, M. Tornatore, “A multi-threaded dynamic bandwidth and wavelength allocation scheme with void filling for long reach WDM/TDM PONs,” Journal of Lightwave Technology, vol. 31, No. 8, pp.1149-1157, 2013.
[6] L. Zhou, X. Cheng, Y. K. Yeo, L. H. Ngoh, “Hybrid WDM-TDM PON Architectures and DWBA Algorithms,” Proceeding 5th International ICST Communications and Networking, pp.1-6, Aug. 2010.
[7] B. Le Guyader, F. Saliou, L. Guillo, M. Leroux, Rui Xia, B. Charbonnier, P. Chanclou, J. M. Pascal, “Dual Reach Extender based on Optical Amplification for GPON and symmetrical 10G-PON systems”, OFC/NFOEC, March, 2012
[8] I. Hwang, A. T. Liem, “A Hybrid Scalable Peer-to-Peer IP-Based Multimedia Services Architecture in Ethernet Passive Optical Networks,” Journal of Lightwave Technology, Vol. 31, No. 2, pp. 213-222, 2013.
[9] M. Fujiwara, T. Imai, K. Taguchi, K. I. Suzuki, H. Ishii, N. Yoshimoto, “ Field Trial of 100-km Reach Symmetric-Rate 10G-EPON System Using Automatic Level Controlled Burst-Mode SOAs,” Journal of Lightwave Technology, vol. 31, No. 4, pp. 634-640, 2013.
[10] G. Mishra, G. Das, A. Kanungoe, “The architecture of a ring based TDM PON to improve survivability and robustness,” Proceeding NCC, pp. 1-5, 2013.
[11] F. Effenberger, “Progress in Optical Access Standards,” Joint ITU/IEEE Workshop on Ethernet Emerging Applications and Technologies, September,2012.
[12] M. Saruwatari, K. Asatani, J. Yamada, I. Hatakeyama, K. Sugiyama, T. Kimura, "Low loss fibre transmission of high speed pulse signals at 1.29 μm wavelength," Electronics Letters, Vol. 14, No. 6, pp. 187-189, 1978.
[13] A. H. Gnauck, R. A. Linke, B. L. Kasper, K. J. Pollock, K. C. Reichmann, R. Valenzuela, R. C. Alferness, "Coherent lightwave transmission at 2 Gbit/s over 170 km of optical fibre using phase modulation," Electronics Letters, Vol. 23, No. 6, pp. 286-287, 1987.
[14] T. X. Richardson, "All-Optical, Fiber-Based 1550 nm Dispersion Compensation ina 10 Gbith, 150 km Transmission Experhent over 13 10 nm Optimized Fiber," OSA/OFC,1992.
[15] J. H. Lee, C. H. Kim, Y. G. Han, S. B. Lee, “Raman amplification-based WDM-PON architecture with Centralized Raman pump-driven, spectrum-sliced erbium ASE and polarization-insensitive EAMs,” Optics Express, Vol. 14, No. 20, pp. 9036-9041, 2006.
[16] 林昶佑,基於自發放射光源與遠端泵浦光放大的分波多工被動光網路架構,國立台灣科技大學電子工程所碩士論文,2012年。
[17] K. Y. Park, C. H. Lee, “Noise characteristics of a wavelength-locked Fabry–Perot laser diode,” IEEE Journal of Quantum Electronics, Vol. 44, No. 11, pp. 995-1002, 2008.
[18] F. Xiong, W. D. Zhong, M. Zhu, H. Kim, Z. Xu, D. Liu, “Characterization of Directly Modulated Self-Seeded Reflective Semiconductor Optical Amplifiers Utilized as Colorless Transmitters in WDM-PONs,” Journal of Lightwave Technology, vol. 31, No. 11, pp. 1727-1733, 2013.
[19] H. H. Lee, S. H. Cho, J. H. Lee, E. S. Jung, J. H. Yu, B. W. Kim, S. S. Lee, S. H. Lee, J. S. Koh, B. H. Sung, S. J. Kang, J. H. Kim, and K. T. Jeong, “First Commercial Service of a Colorless Gigabit WDM/TDM Hybrid PON System,” Proceeding OSA/OFC/NFOEC, pp. 1-3, Mar. 2009.
[20] J. H. Yu, K. Nam, W. K. Byoung, “Remodulation schemes with reflective SOA for Colorless DWDM PON,” Journal of Optical Networking ,Vol. 6, No. 8, pp. 1041-1054, 2007.
[21] S. Kobayashi, J. Yamada, S. Machida, T. Kimura, “Single-mode operation of 500 Mbit/s moducated AlGaAs semiconductor laser by injection locking,” Electronics Letters, Vol. 16, No. 19, pp.746-748, 1980.
[22] H. D. Kim, S. Kang, C. Lee, “A Low-Cost WDM source with an ASE injected Fabry-Perot semiconductor laser,” IEEE Photonics Technology Letters, VoL.12, No. 8. pp. 1067-1069, 2000.
[23] C. H. Kim, J. H. Lee, D. K. Jung, Y. G. Han, S. B. Lee, “Performance Comparison of directly-modulated, wavelength-Locked Fabry-Perot laser diode and EAM-modulated, spectrum-sliced ASE source for 1.25 Gb/s WDM-PON,” Proceeding OFC/NFOEC, Mar. 2007.
[24] G. Keiser, Optical Fiber Communications, McGraw-Hill, 2010.
[25] 張勝雄,楊慶忠,光解多工器濾波技術之介紹,遠東學報第二十卷第三期民國九十二年六月。
[26] 楊淳良,趙亮琳等,光纖通訊網路,五南文化事業,民國96年。
[27] 張忠民,設計與實現雙向10-Gb/s傳輸的遠端泵激分波多工被動光網路,國立台灣科技大學電子工程所碩士論文,2011年。
[28] E. Desurvire,” Erbium-doped Fiber Amplifiers Principles and Applications”, Wiley-Interscience, 1994.
[29] M. N. Islam, Ed.,” Raman Amplifiers for telecommunications”, Journal of Selected Topics in Quantum Electronics, Vol. 8, No. 3, pp. 548-559, 2003.
[30] J. Bromage, “Raman amplification for fiber Communications systems,” Journal of lightwave Technology, Vol. 22, No. 1, pp. 79-93, 2004.
[31] A. H. Beshr, M. H. Aly, “Raman Gain and Raman Gain Coefficient for SiO2, GeO2, B2O3 and P2O5 Glasses”, 24th National Radio Science Conference, pp. 1-7, Mar. 2007.
[32] J. C. Palais, Fiber Optical Communication, Prentice Hall, 2004.
[33] X. Q. Jin, J. Groenewald, E. Hugues-Salas, R. P. Giddings, J. M. Tang, “Upstream Power Budgets of IMDD Optical OFDMA PONs Incorporating RSOA Intensity Modulator-Based Colorless ONUs,” Journal of lightwave Technology, Vol. 31, No. 12, June 15, 2013.
[34] N. Andriolli, S. Faralli, X. J. Leijtens, J. Bolk, G. Contestabile, “MonolithiCally Integrated ALL-Optical Regenerator for Constant Envelope WDM Signals,” Journal of lightwave Technology, Vol. 31, No. 2, January 15, 2013.
[35] A. Hurtado, M. Nami, I. D. Henning, M. J. Adams, L. F. Lester, “Two-Wavelength Switching With a 1310-nm Quantum Dot Distributed Feedback laser,”, IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, Vol. 19, No. 4, July/August 2013.
[36] J. Y. Kim, S. R. Moon, S. H. Yoo, C. H. Lee, “Modeling of Seeded Reflective Modulators for DWDM Systems,” IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, Vol. 19, No. 5, September/October 2013.
[37] D. A. B Miller, T. C. Daman, A. C. Gossard, W. Wiegmann, T. H. Wood and C. A. Burus, “Band-Edge Electroabsorption in Quantum Well Structures: the Quantum-Confined Stark effect,” Physical Review Letters, Vol. 53, No.26, pp.2173-2175, 1984.
[38] 郭南宏,雙向WiMAX上載分波多工被動光纖網路設計,碩士論文,台灣科技大學,民國98年。
[39] M. H. Reeve, A. R. Hunwicks, W. Zhao, S. G. Methley, L. Bickers, and S. Hornung, “LED spectral slicing for single- mode local Loop application,” Electronics Letters, vol. 24,pp. 389-390, 1988.
[40] T. E. Chapuran, S. S. Wagner, R. C. Menendez, H. E. Tohme, and L. A. Wang, “Broadband multichannel WDM transmission with superluminescent diodes and LEDs,” GLOBECOM., Vol. 1, pp. 613-618, 1991.
[41] 胡至人,頻譜分割的非同調性光源在分波多工系統上的應用,國立中山大學光電工程研究所碩士論文,2000年。
[42] J. S. Lee, Y. C. Chung, and D. J. DiGiovanni, “Spectrum-sliced fiber amplifier Light source for multichannel WDM applications,” Photonics Technology Letters, Vol. 5, No. 12, pp. 1458-1461, 1993.
[43] 原榮,鄔文杰,陳積德,宋馭民,劉正瑜,光纖通訊系統-原理與應用,新文京開發出版股份有限公司,民國93年。
[44] A. M. Rahman, Broman, M. Howieson , “Optimum Low Pass Filter Bandwidth for Generating Duobinary Signal for 40 Gb/s Systems,” Thin Film Technology Corp ,1980.
[45] M. J. Li, “Recent progress in fiber dispersion Compensators,” Conference on Optical Communication/ ECOC'01. 27th European, Vol. 4, 2001.
[46] L. A. Jiang, “Propagation properties of duobinary transmission in optical fibers,” Master Diss. Massachusetts Institute of Technology, 1998.
[47] 葉保祺,最佳化光倍二位元系統之驅動電壓及倍二位元濾波器大小,國立清華大學通訊工程研究所碩士論文,2005年。
[48] Hu. Bo-ning, Wang Jing, Wang Wei, Rui-mei Zhao. “Analysis on dispersion Compensation with DCF based on Optisystem,” Conference on Industrial and Information Systems (IIS), Vol. 2, 2010.
[49] Chris Towery, Tidd Zhang, “Reduced dispersion fiber extends reach for dispersion tolerant systems,” Optical Fiber Communication and Optoelectronics Conference, pp. 45-48, 2007.

QR CODE