簡易檢索 / 詳目顯示

研究生: 翁孟冬
Meng-Dung Weng
論文名稱: 非合作式賽局理論頻譜共享及無線網路資源配置之研究
Study on Noncooperative Game Theoretic Spectrum Sharing and Resource Allocation in Wireless Networks
指導教授: 黎碧煌
Bih-Hwang Lee
口試委員: 鍾添曜
Tein-Yaw Chung
余聲旺
Sheng-Wang Yu
吳傳嘉
Chwan-Chia Wu
鄭瑞光
Ray-Guang Cheng
馮輝文
Huei-Wen Ferng
學位類別: 博士
Doctor
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 67
中文關鍵詞: 頻譜共享感知無線電奈許平衡二階規劃粒子群演算法策略定價最佳化
外文關鍵詞: Spectrum sharing, Cognitive radio, Nash equilibrium, Bilevel programming, Swarm particle algorithm, Strategic pricing optimization
相關次數: 點閱:230下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 因為現在網路的蓬勃發展,但由於頻譜資源有限,如何分配這些頻譜資源是現在無線通訊系統的關鍵問題。
    本論文研究主題之ㄧ,即為在感知無線電網路使用彈性的頻譜共享技術,獲得更有效率的頻譜利用,我們考慮在感知無線電網路一個主要使用者能將其頻譜租給次要使用者達到共享頻譜的目的,利用定價方案和賽局理論共同解決網路頻譜共享的議題。此篇論文我們首先提出將非線性一個主要使用者,與多個次要使用者(NLMF)共享頻譜方案,視為一個多目標最佳化問題,售價由主要使用者同時提供給多個次要使用者競爭,並利用群體智慧解決這個問題,次要使用者依據對手前一次的策略的觀測資料,逐次的調整他們各自的策略,直到奈許平衡。
    然後我們提出另一個以奈許平衡為基礎,非線性二階一個主要使用者多個次要使用者(NBMF)最佳化問題,和一個新型應用二階規劃和群體智慧最佳定價策略的最佳化技術,對於一個領導者跟隨者賽局的頻譜共享機制,除了考慮次要使用者的最佳利益,更進一步尋求主要使用者的最佳定價解。我們用粒子群演算法迭代的方式搜尋策略定價最佳化解這兩個模型,效率評估結果顯現感知無線電網路兩個定價模型的行為。
    本論文中研究主題之二,即為針對無線網路通訊,研究一個結合重傳和多使用者分集的跨接式最佳化機制,對此我們提出多使用者加權公平排程架構,為了有效率的資源配置,此架構結合適應性調變編碼機制和具重傳自動重複請求機制。此方案設計是利用多使用者分集和重傳技術增加系統頻譜增益,並在未知時變衰減通道分佈下,提出隨機傳輸排程策略,使能在公平資源配置限制下,最大化系統頻譜效率,然後設計評量實用的排程逼近這些目標,並作為未來研究方向。


    Because of the rapid growing demand of high quality service over wireless networks, spectrum resources are more and more inadequate in current communication systems. Since the bandwidth is very precious, allocation of spectrum resources becomes an important research issue.
    Cognitive radio network is expected to use flexible radio frequency spectrum sharing techniques for achieving more efficient frequency spectrum usage. In this thesis, we consider the spectrum sharing problem that one primary user (PU) can share its frequency spectrum by renting this spectrum to multiple secondary users (SUs). The pricing scheme is a key issue for spectrum sharing in cognitive radio network.
    We first propose a nonlinear one-leader-multiple-follower (NLMF) sharing spectrum scheme as a multi-object optimization problem; the prices are offered by PU to SUs at the same time. This problem can be solved by using particle swarm optimization (PSO); SUs gradually and iteratively adjust their strategies respectively based on the observations on their opponents’ previous strategies until Nash equilibrium is completed.
    We then present a general nonlinear bilevel one-leader-multiple-follower (NBMF) optimization problem to further consider the revenue of the PU and a new optimal strategic pricing optimization technique which applies bilevel programming and swarm intelligence. A leader-follower game is formulated to obtain the Stackelberg-Nash equilibrium for spectrum sharing that considers not only the revenue of a PU but also the SUs utility.
    We develop a swarm particle algorithm to iteratively solve the problem defined in the NBMF decision model for searching the strategic pricing optimization. The behaviors of two pricing models have been evaluated, and the performance results show that the proposed algorithms perform well to solve the spectrum sharing in a cognitive radio network.
    In this thesis, we then consider a new wireless communication system which a cross-layer optimization scheme combining retransmission with multiuser diversity is investigated. To this end, we address the issue of cross layer design in the proposed multiuser weighted fair scheduling framework which combines adaptive modulation and coding (AMC) with the retransmission-based automatic repeat request (ARQ) protocol in order to provide efficient resource allocation.
    This design is then employed to devise multiuser scheduling schemes that can optimally capture the available multiuser diversity and retransmission caused spectral efficiency gain. We present the stochastic transmission scheduling policy that exploits the underlying fading channel distribution which is unknown a priori and maximizes system spectral efficiency under a certain resource allocation fairness constraint. We design and evaluate practical schedulers that approximate these objectives and regard it as a research direction in the future.

    Table of Contents Abstract in Chinese iii Abstract v Acknowledgement vii Table of Contents viii List of Symbols x List of Figures xiv List of Tables xvi Chapter 1 Introduction 1 1.1 Research Motivation 1 1.2 Organization 3 Chapter 2 Background and Related Works 4 2.1 Cognitive Radio Networks Overview 4 2.2 Cross Layer Overview 5 2.3 Related Works 6 Chapter 3 Spectrum Sharing for Cognitive Radio Networks 11 3.1 Mathematic Descriptions of NBMF Problems 11 3.1.1 Problem Statement 11 3.1.2 Nash Equilibrium and Stackelberg-Nash Equilibrium 14 3.2 System Model 15 3.3 NASH-PSO and NBMF-PSO algorithms 20 3.3.1 Nash-PSO Algorithm 22 3.3.2 NBMF-PSO Algorithm 24 3.4 Performance Evaluation 27 3.4.1 The Nash-PSO Algorithm 28 3.4.2 The NBMF-PSO Algorithm 33 Chapter 4 Cross Layer Design for Multiuser Scheduling 39 4.1 System Model 39 4.1.1 Modeling Preliminaries 39 4.1.2 Joint Design of AMC with ARQ 41 4.2 Optimal Multiuser Scheduling 43 4.2.1 Scheduling Nonreal-time Traffic 44 4.2.2 Optimization Model for Weighted Fair Scheduling 45 4.3 Numerical Results 50 Chapter 5 Conclusion 54 References 56 Appendix A Abbreviations and Acronyms 65

    [1] F. C. Commission, “Spectrum policy task force report, FCC 02-155.”
    Nov. 2002.
    [2] S. Haykin, “Cognitive radio: Brain-empowered wireless communications,” IEEE J Select. Areas Comm., vol. 23, no. 2, pp. 201-220, Feb. 2005.
    [3] J. Mitola, “Cognitive radio for flexible multimedia communications,” in
    Proc. MoMuC’99, pp. 3-10, 1999.
    [4] J. Mitola and G. Q. Maguire, “Cognitive radio: making software radios
    more personal,” IEEE Personal Communications, vol. 6, pp. 13-18, Aug. 1999.
    [5] Lu Lu , Xiangwei Zhou, Uzoma Onunkwo and Geoffrey Ye Li, “Ten years of research in spectrum sensing and sharing in cognitive radio,” EURASIP Journal on Wireless Commun. and Networking, pp. 1-16, Jan. 2012.
    [6] M Dashouk, M Alanyali, “A utility-based approach for secondary spectrum sharing,” EURASIP Journal on Wireless Commun. and Networking, pp. 1-11, July. 2011.
    [7] Weeraddana, P.C., Codreanu, M., Latva-aho, M., Ephremides, A. “Resource allocation for cross-layer utility maximization in wireless networks”, IEEE Trans. Veh. Technol., 2011, 60, (6), pp. 2790–2809
    [8] Gatsis, N., Ribeiro, A., Giannakis, G.B.: “A class of convergent algorithms for resource allocation in wireless fading networks”, IEEE Trans. Wirel. Commun., 2010, 9, vol.5 , pp. 1808–1823
    [9] J. Mitola and G. Q. Maguire, “Cognitive radios: making software radios more personal,” IEEE Personal Communications, vol.6, no. 4, pp. 13-18, Aug. 1999.
    [10] I. F. Akyildiz, W. Y. Lee, M. C. Vuran, and S. Mohanty, “NeXt Generation/Dynamic Spectrum Access/Cognitive Radio Wireless Networks : A Survey,” Computer Networks, vol. 50, pp. 2127-2159, May. 2006.
    [11] Q. Zhao and B. M. Sadler, “Dynamic spectrum access: signal processing, networking, and regulatory policy,” IEEE Signal Processing Mag., pp. 79-89, May 2007.
    [12] I. Akyildiz, X. Wang, “Cross Layer Design in Wireless Mesh Networks”, IEEE Transactions on Vehicular Technology, vol. 57, No. 2, March 2008.
    [13] M.-S. Alouini, and A. J. Goldsmith, “Adaptive modulation over Nakagami fading channels,” Kluwer J. Wireless Commun., vol. 13, no. 1–2, pp. 119-143, May 2000.
    [14] Q. Liu, S. Zhou, and G. B. Giannakis, “Cross-layer combining of adaptive modulation and coding with truncated ARQ over wireless links,” IEEE Transactions on Wireless Communications, vol. 3, no. 5, pp. 1746–1755, Sept. 2004.
    [15] Q. Liu, S. Zhou, and G. B. Giannakis, “Queuing with adaptive modulation and coding over wireless links: Cross-layer analysis and design,” IEEE Trans. Wireless Commun., vol. 4, no. 3, pp. 1142–1153, May 2005.
    [16] X. Wang, Q. Liu, and G. B. Giannakis, “Analyzing and optimizing adaptive modulation-coding jointly with ARQ for QoS-guaranteed traffic,” IEEE Transactions on Vehicular Technology, vol. 56, no. 2, pp. 710-720, March 2007.
    [17] V. Brik, E. Rozner, S. Banerjee, and P. Bahl, “DSAP: A protocol for coordinated spectrum access,” IEEE DySPAN 2005, pp. 611-614, Nov. 2005.
    [18] J. Zhao, H. Zheng, and G. H. Yang, “Distributed coordination in dynamic spectrum allocation networks,” IEEE DySPAN 2005, pp. 259-268, Nov. 2005.
    [19] P. Y. Ren, Y. C. Wang, Q. H. Du, & J. Xu, “A survey on dynamic spectrum access protocols for distributed cognitive wireless networks,” EURASIP Journal on Wireless Commun. and Networking, pp. 1-21, Feb. 2012.
    [20] D. I. Kim, L. Le, and E. Hossain, “Joint rate and power allocation for cognitive radios in dynamic spectrum access environment,” IEEE Trans. Wireless Commun., vol. 7, no. 12, pp. 5517-5527, Dec. 2008.
    [21] S Aslam, K Lee,”Fair, efficient, and power-optimized spectrum sharing scheme for cognitive radio networks,” EURASIP Journal on Wireless Commun. and Networking, pp. 1-11, Dec. 2011.
    [22] B. Atakan and O. B. Akan, “BIOlogically - Inspired spectrum sharing in cognitive radio networks,” IEEE Wireless Commun. and Networking Conference 2007, pp.43-48, Mar. 2007.
    [23] M. J. Osborne and A. Rubinstein., A Course in Game Theory. The MIT Press, 1994.
    [24] N. Nie and C. Comaniciu, “Adaptive channel allocation spectrum etiquette for cognitive radio networks,” in Proc. IEEE DySPAN’05, pp. 269-278, Nov. 2005.
    [25] A. Attar, M. R. Nakhai, and A. H. Aghvami, “Cognitive radio game for secondary spectrum access problem,” IEEE Trans. Wireless Commun., vol. 8, no. 4, pp. 2121-2131, Apr. 2009.
    [26] Z. Han, C. Pandana, and K.J. Ray Liu, “Distributive opportunistic spectrum access for cognitive radio using correlated equilibrium and no-regret learning,” Proc. IEEE Wireless Comm. and Networking Conf. (WCNC ’07), Mar. 2007.
    [27] V. Rodriguez, K. Moessner, and R. Tafazolli, “Auction driven dynamic spectrum allocation: optimal bidding, pricing and service priorities for multi-rate, multi-class CDMA,” in Proc. IEEE PIMRC’05, vol. 3, pp. 1850-1854, Sep. 2005.
    [28] F. Wang, M. Krunz, and S. Cui, “Price-based spectrum management in cognitive radio networks,” IEEE J. Sel. Areas Commun., vol. 2, pp. 74-87, 2008.
    [29] J. Huang, R. Berry, and M. L. Honig, “Auction-based spectrum sharing,” ACM/Springer Mobile Networks and Apps., vol. 11, no. 3, pp. 405-418, Jun. 2006.
    [30] H. B. Chang and K. C. Chen, “Auction-based spectrum management of cognitive radio networks,” IEEE Trans. Veh. Technol., vol. 59, no. 4, pp. 1923-1935, May 2010.
    [31] X. Wang, Z. Li, P. Xu, Y. Xu, X. Gao, and H. Chen, “Spectrum sharing in cognitive radio networks-an auction based approach,” IEEE Trans. System, Man and Cybernetics-Part B: Cybernetics, vol. 40, no. 3, pp. 587-596, 2010.
    [32] D. Niyato and E. Hossain, “A Game-Theoretic Approach to Competitive Spectrum Sharing in Cognitive Radio Networks,” in IEEE WCNC’2007, pp. 16-20, Mar. 2007.
    [33] D. Niyato and E. Hossain, “Competitive pricing for spectrum sharing in cognitive radio networks: Dynamic game, inefficiency of Nash equilibrium, and collusion,” IEEE J. Sel. Areas Commun., vol. 26, no. 1, pp. 192-202, Jan. 2008.
    [34] D. Niyato and E. Hossain, “Market-equilibrium, competitive, and cooperative pricing for spectrum sharing in cognitive radio networks: Analysis and comparison,” IEEE Trans. Wireless Commun., vol. 7, no. 11, pp. 4273-4283, Nov. 2008.
    [35] S. H Chun and RJ La, "Secondary Spectrum Trading - Auction-Based Framework for Spectrum Allocation and Profit Sharing", IEEE/ACM Transactions on Networking vol. 21, no.1, pp.176–189, Feb. 2013.
    [36] L. Gao, X. Wang, Y. Xu and Q. Zhang, “Spectrum Trading in Cognitive Radio Networks: A Contract- Theoretic Modeling Approach,” IEEE Journal on Selected Areas in Commun., vol. 29, no. 4, pp. 843-855, April 2011.
    [37] D. Niyato and E. Hossain, “Hierarchical spectrum sharing in cognitive radio: a microeconomic approach,” in Proc. IEEE WCNC’07, Mar. 2007.
    [38] H. Yu, C. Dang, and S. Wang, “Game theoretical analysis of buy-it-now price auctions,” International Journal of Information Technology and Decision Making, vol. 5, pp. 557-581, 2006.
    [39] S. Suh and T. Kim, “Solving nonlinear bilevel programming models of equilibrium network design problem: A comparative review,” Ann. Oper. Res., vol. 34, pp. 203-218, 1992.
    [40] J. Amat and B. McCarl, “A representation and economic interpretation of a two-level programming problem,” Journal of the Operational Research Society, vol. 32, pp. 783-792, 1981.
    [41] Y. Gao, G. Zhang, J. Lu, and S. Gao, “A bilevel model for railway train set organizing optimization,” in 2007 International Conference on Intelligent Systems and Knowledge Engineering (ISKE2007). Atlantis Press, pp. 777-782, 2007.
    [42] G. Zhang, G. Zhang, Y. Gao, and J. Lu, “Competitive strategic bidding optimization in electricity markets using bi-level programming and swarm technique,” IEEE Trans. Ind. Electron., vol. 58, pp. 2138-2146, 2011.
    [43] B. Colson, P. Marcotte, and G. Savard, “Bilevel programming: An survey,” A Quarterly Journal of Operations Research (4OR), vol.3, pp. 87-107, 2005.
    [44] J.F. Bard, “Practical bilevel optimization: algorithms and applications,” Kluwer Academic Publishers, Boston, 1998.
    [45] W.F. Bialas, M.H. Karwan, “Two level linear programming,” Management Science, vol. 30, no.8, pp. 1004-1020, Aug. 1984.
    [46] P. Hansen, B. Jaumard, and G. Savard, “New branch-and-bound rules for linear bi-level programming,” SIAM J. Sci. Statist. Comput., vol.13, no. 5, pp. 1194-1217, Sep. 1992.
    [47] Herminia I. Calvete, Carmen Gale, Pedro M. Mateo, “A genetic algorithm for solving linear fractional bilevel problems”, Ann Oper Res, vol. 166, pp. 39-56, Feb. 2009.
    [48] M. Gendreau, P. Marcotte, and G. Savard, “A hybrid tabu-ascent algorithm for the linear bilevel programming problem,” J. Global Opt., vol. 8, no. 3, pp. 217-233, Apr. 1996.
    [49] Y. Gao, G. Zhang, and J. Lu, “A particle swarm optimization based algorithm for fuzzy bilevel decision making,” in Proc. Int. Conf. Fuzzy Syst. (FUZZ), pp. 1452-1457, 2008.
    [50] F. P. Kelly, “Charging and rate control for elastic traffic,” Eur. Trans. Telecommun., vol. 8, pp. 33–37, 1997.
    [51] P. Bender, P. Black, M. Grob, R. Padovani, N. Sindhushayana, and A. Viterbi, “CDMA/HDR: a bandwidth-efficient high-speed wireless data service for nomadic users,” IEEE Communications Magazine, pp. 70–77, July 2000.
    [52] A. Jalali, R. Padovani, and R. Pankaj, “Data throughput of CDMA-HDR a high efficiency-high data rate personal communication wireless system,” in IEEE VTC, 2000.
    [53] X. Liu, E. Chong, and N. Shroff, “Transmission scheduling for efficient wireless network utilization,” in Proceedings of IEEE INFOCOM ’01, Anchorage, Alaska, Apr. 2001.
    [54] Y. Liu, S. Gruhl, and E. Knightly, ” WCFQ: an opportunistic wireless
    scheduler with statistical fairness bounds. IEEE Transactions on
    Wireless Communication, September 2003.
    [55] A. Gyasi-Agyei, “Multiuser diversity based opportunistic scheduling for wireless data networks,” IEEE Commun. Lett., vol. 9, no. 7, pp. 670–672, Jul. 2005.
    [56] Q. Xia and M. Hamdi, “Cross Layer Design for IEEE 802.11 WLANs:
    Joint Rate Control and Packet Scheduling,” Conference on Local
    Computer Networks, LCN, 2005, pp. 624-631.
    [57] X. Wang, G. B. Giannakis, and A. G. Marques, “A unified approach to
    QoS-guaranteed scheduling for channel-adaptive wireless networks”,
    Proceedings of the IEEE, vol. 95, no. 12, pp. 2410–2431, Dec. 2007.
    [58] Y. Liu and E. Knightly, “Opportunistic fair scheduling over multiple
    wireless channels,” in Proc. IEEE INFOCOM, Mar. 2003, pp. 1106–1115.
    [59] X. Wang, D. Wang, Li, H. Zhuang, and S. Morgera, “Incorporating retransmission diversity in quality-of-service guaranteed multi-user scheduling”, Proc. on Info. Sciences and Systems, pp. 681-685, 2008.
    [60] J. Cai, X. Shen, and J. Mark, “Downlink resource management for packet transmission in OFDM wireless communication systems," IEEE Trans. Wireless Commun., vol. 4, pp. 1688-1703, July 2005.
    [61] Y. Ma, “Rate-maximization for downlink OFDMA with proportional fairness," IEEE Trans. Veh. Technol., vol. 57, pp. 3267-3274, Sept. 2008.
    [62] H. von Stackelberg, The Theory of the Market Economy. London, U.K.: William Hodge, 1952.
    [63] J. Lu, C. Shi, G. Zhang, “On bilevel multi-follower decision making: General framework and solutions,” Information Sciences, vol. 176, no. 11, pp. 1607-1627, 2006.
    [64] Liu B, “Stackelberg-Nash equilibrium for multilevel programming with multiple followers using genetic algorithms,” Computers and Mathematics with Applications, vol. 36, no.7, pp. 79-89, Oct.1998.
    [65] V. Oduguwa and R. Roy, “Bi-level optimisation using genetic algorithm,” in Proc. IEEE ICAIS, pp. 322-327, 2002.
    [66] A. J. Goldsmith and S.-G. Chua, “Variable rate variable power MQAM for fading channels,” IEEE Trans. Commun., vol. 45, no. 10, pp. 1218-1230, Oct. 1997.
    [67] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proc. IEEE Int. Conf. Neural Networks, vol. 4, pp. 1942-1947, 1995.
    [68] R. Eberhart and J. Kennedy, “A new optimizer using particle swarm theory,” in Proc. 6th Int. Symp. Micro Machine Human Science, pp. 39-43, 1995.
    [69] K. Parsopoulos and M. Vrahatis, “On the computation of all global minimizers through particle swarm optimization,” IEEE Trans. Evol. Comput., vol. 8, no. 3, pp. 211–224, Jun. 2004.
    [70] John Nash, “Equilibrium points in n-person games,” Proc. Nat. Acad. Sci. U.S.A, vol. 36, pp. 48-49, 1950.
    [71] John Nash, “Non-cooperative games,” Annals of Mathematics, Second Series, vol. 54, no. 2, pp. 286-295, Sep. 1951.
    [72] A. J. Goldsmith and S.-G. Chua, “Adaptive coded modulation for fading channels,” IEEE Trans. Commun., vol. 46, no. 5, pp. 595–602, May 1998.
    [73] M.-S. Alouini and A. J. Goldsmith, “Adaptive modulation over Nakagami fading channels,” Wireless Pers. Commun., vol. 13, no. 1/2, pp. 119–143, May 2000.

    QR CODE