簡易檢索 / 詳目顯示

研究生: 林禹志
Yu-Chih Lin
論文名稱: 應用格網運算技術於結構系統之數值模擬
Application of Grid Computing for Numerical Simulation of Structural Systems
指導教授: 陳鴻銘
Hung-Ming Chen
口試委員: 王仲宇
Chung-Yue Wang
謝尚賢
Shang-Hsien Hsieh
楊元森
Yuan-Sen Yang
張大鵬
Ta-Peng Chang
謝佑明
Yo-Ming Hsieh
學位類別: 博士
Doctor
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 103
中文關鍵詞: 格網運算網際網路分散式計算數值模擬結構系統階層式模型
外文關鍵詞: distributed processing, structural systems, hierarchical modeling
相關次數: 點閱:308下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 結構系統之數值模擬,所使用之結構物數值模型必須要能夠詳細地囊括結構物於不同尺度之行為,此類之計算工作必須要有大量的計算資源以及高速運算的技術來配合,近年來網際網路已革命性地改變了電腦的運作方式,格網運算之網路即電腦之概念被認為是提升現有電腦計算能力的最可能方向,網際網路連結了無數的電腦,理論上可產生無可限量的計算能力,然而遠距的資料交換是格網計算的一大瓶頸。
    本研究嘗試使用多層次之叢集架構,將多個地理上遠距的電腦叢集,經由網際網路相連整合而成的格網式計算環境,並配合整合多尺度數值模型之階層式計算環境,以整合多個構件詳細數值模型之分析工作來模擬整體結構物於各種不同尺度之行為。為解決網際網路資料溝通效率低之障礙,本研究採用主從式來設計系統架構,即是用戶端所使用之某個簡化構件模型,其在伺服端必須有一個對應的詳細構件模型,以其於遠端之模擬結果提供近端簡化構件模型之詳細行為反應。依據所提出之分析模擬方法,本系統是基於格網運算的架構,整合多個地理上遠距的電腦叢集,配合主從式的多尺度值模型之階層式模擬架構來對結構物系統做數值模擬,同時並使用系統測試實例來驗證本系統之可行性。


    This study has presented a framework for a Grid-based structural simulation by integrating a Grid-based cluster-to-cluster distributed computing environment and a multi-level hierarchical method of modeling and simulation. The purpose of this study is to utilize the idle and available computational resources which are geographically distributed on the Internet for providing the computing power needed for processing structural simulations. Two levels of parallel processing are involved in this framework: multiple local distributed computing environments connected by the Internet to form a Grid-based cluster-to-cluster distributed computing environment. To utilize such a computing environment for a realistic simulation, the simulation task of a structural system has been separated into a simulation of a simplified global model in association with several detailed component models using various scales. These related multi-scale simulation tasks are distributed amongst clusters and connected to form a multi-level hierarchy. The Grid computing technology is used to coordinate geographically distributed simulation tasks. This study also presents the development of a software framework that can support the multi-level hierarchical simulation approach, in a Grid-based cluster-to-cluster distributed computing environment. The architectural design of the program also allows the integration of several multi-scale models to be clients and servers under a single platform. Such integration can combine geographically distributed computing resources to produce realistic simulations of structural systems.

    CHAPTER 1 INTRODUCTION 1 1.1 BACKGROUND 1 1.2 OBJECTIVES 3 1.3 ORGANIZATION OF THE DISSERTATION 4 CHAPTER 2 INTRODUCTION TO GRID COMPUTING 6 2.1 GRID COMPUTING 6 2.2 THE EVOLUTION OF GRID COMPUTING 6 2.3 THE GLOBUS TOOLKIT 10 2.3.1 Common Runtime Components 11 2.3.2 Security Components 11 2.3.3 Execution Management Components 12 2.3.4 Data Management Components 12 2.3.5 Information Services Components 12 2.3.6 The Fundamental Grid Tools 13 2.4 GRID TECHNOLOGY 15 2.4.1 The Java CoG Kit 15 2.4.2 Grid Portal 16 2.4.3 Grid Portlet 17 2.4.3 Science Gateway 18 CHAPTER 3 LITERATURE REVIEW OF RELATED RESEARCHES 20 3.1 INTRODUCTION 20 3.2 LITERATURE REVIEW IN SYSTEM INTEGRATION 21 3.3 LITERATURE REVIEW IN DISTRIBUTED EXPERIMENTAL SIMULATION 23 3.4 LITERATURE REVIEW IN STRUCTURAL DESIGN AND ANALYSIS 24 3.5 LITERATURE REVIEW IN GEOSCIENCES 27 3.6 LITERATURE SUMMARY 28 CHAPTER 4 SIMULATION METHODS 29 4.1 THE PROPOSED SIMULATION METHODS 29 4.1.1 The cluster-to-cluster distributed computing environment 31 4.1.2 The multi-level hierarchical modeling and simulation 32 4.2 SYSTEM REQUIREMENTS 35 4.2.1 The cluster-to-cluster communication protocol 35 4.2.2 The mapping of SCM and RCM 37 4.2.3 The synchronization of the multi-level hierarchical models 38 4.2.4 The accommodation of nonlinear effects 40 4.2.5 The integration of commercial analysis software 42 4.2.6 The graphical user interface 43 4.2.7 The fault tolerance 44 CHAPTER 5 GRID-BASED SOFTWARE FRAMEWORK 45 5.1 THE ADOPTION OF GRID TOOLS 45 5.2 THE PROPOSED GRID-BASED SOFTWARE FRAMEWORK 46 5.3 THE SIMULATION PROCESSES 48 5.4 SYSTEM MECHANISMS 51 5.4.1 The Data Retrieval Mechanism 51 5.4.2 The Input Generating Mechanism 52 5.4.3 The Process Checking Mechanism 53 5.4.4 The Resource Discovery Mechanism 54 5.4.5 The Authorization and Credential Mechanism 55 5.4.6 Model Management Mechanism 56 CHAPTER 6 SYSTEM IMPLEMENTATION 58 6.1 INTRODUCTION 58 6.2 THE GRAPHICAL USER INTERFACE MODULE 59 6.3 THE COORDINATOR MODULE 60 6.3.1 The Model class 62 6.3.2 The ModelManager class 63 6.3.3 The GridUtility class 65 6.3.4 The ProcessController and the Deployer class 66 6.3.5 The DataRetriever class 67 6.3.6 The InputGenerator class 68 CHAPTER 7 THE NUMERICAL CASE STUDY 70 7.1 INTRODUCTION 70 7.2 NUMERICAL CASE STUDY I 72 7.3 NUMERICAL CASE STUDY II 76 CHAPTER 8 CONCLUSIONS 82 8.1 CONSLUSIONS 82 8.2 DISCUSSIONS 83 8.3 SUGGESTIONS FOR FUTURE WORKS 84 REFERENCES 85 APPENDIX THE LIST OF SYSTEM CLASSES 90

    Adams, M. F., Bayraktar, H. H., Keaveny, T. M., and Papadopoulos, P., “Ultrascalable Implicit Finite Element Analyses in Solid Mechanics with over a Half a Billion Degrees of Freedom.”, Proceedings of the SC2004 Conference: High Performance Networking and Computing, ACM/IEEE, Pittsburgh, PA, USA (2004)

    Alameda, J., Christie, M., Fox, G., Futrelle, J., Gannon, D., Hategan, M., Kandaswamy, G., Von, Laszewski, G., Nacar, M. A., Pierce, M., Roberts, E., Severance, C., and Thomas, M., “The Open Grid Computing Environments Collaboration: Portlets and Services for Science Gateways”, Concurrency Computation Practice and Experience, Vol. 19, No. 6, pp. 921-942 (2007)

    Alonso, J. M., De Alfonso, C., Garcia, G., and Hernandez, V., “GRID Technology for Structural Analysis”, Advances in Engineering Software, Vol. 38, No. 11-12, pp. 738-749 (2007)

    Alonso, J. M., De Alfonso, C., Garcia, G., and Hernandez, V. A., “High-Throughput Application for The Dynamic Analysis of Structures on a Grid Environment”, Advances in Engineering Software, Vol. 39, No. 10, pp. 839-848 (2008)

    Alonso, J. M., Hernandez, V., and Garcia, G., “GMarte: Grid Middleware to Abstract Remote Task Execution”, Concurrency Computation Practice and Experience, Vol. 18, No. 15, pp. 2021-2036 (2006)

    Beckles, B., Coveney, P., Ryan, P., Abdallah, A., Pickles, S., Brooke, J., and McKeown, M., “A User-Friendly Approach to Computational Grid Security”, Proceedings of the UK E-Science All Hands Meeting (2006)

    Brooke, J. M., Parkin, and M. S., “Enabling Scientific Collaboration on the Grid”, Future Generation Computer Systems, Vol. 26, Issue 3, March 2010, pp. 521-530 (2010)

    Chin, J., and Coveney, P., “Towards Tractable Toolkits for the Grid: A Plea for Lightweight, Usable Middleware”, Technical Report. UKeS-2004-01, UK e-Science Technical Report Series (2004)

    Chen, H. M., and Archer, G. C., “A Distributed Object-Oriented Finite Element Analysis Program Architecture”, Journal of Computer-Aided Civil and Infrastructure Engineering, Vol. 16, No. 5, pp. 326-336 (2001)

    Chen, H. M., and Lin, Y. C., “Web-FEM: An Internet-Based Finite-Element Analysis Framework with 3D Graphics and Parallel Computing Environment”, Advances in Engineering Software, Vol. 39, No. 1, pp. 55-68 (2008)

    Chen, H. M., and Iranata, D., “Realistic Simulation of Reinforced Concrete Structural Systems with Combine of Simplified and Rigorous Component Model”, Structural Engineering and Mechanics, Vol. 30, No.5, pp. 619-645 (2008)
    Chen, S. X., “A Communication Technology for Internet-Based Collaboration Optimization for Distributed Structural Systems”, Structural and Multidisciplinary Optimization, Vol. 29, No. 5, pp. 391-397 (2005)

    D’Ambrisi, A., and Fillippou, F. C., “Modeling of Cyclic Shear Behavior in RC Members”, ASCE Journal of Structural Engineering, Vol. 125, No. 10, pp. 1143-1150 (1999).

    DEISA (2002), http://www.deisa.eu/.

    Dolenc, M., Katranuschkov, P., Gehre, A., Kurowski, K., and Turk, Z., “The Inteligrid Platform for Virtual Organisations Interoperability”, Electronic Journal of Information Technology in Construction, Vol. 12, pp. 459-477 (2005)

    Dolenc, M., Kline, R., Turk, Z., Katranuschkov, P., and Kurowski, K., “Semantic Grid Platform in Support of Engineering Virtual Organizations” Informatica (Ljubljana), Vol. 32, No. 1, pp. 39-49 (2008)

    EGEE (2004), http://www.eu-egee.org/.

    Farhat, C., and Roux, F. X., “A Method of Finite Element Tearing and Interconnecting and Its Parallel Solution Algorithm”, International Journal for Numerical Methods in Engineering, Vol. 32, No. 6, pp. 1205-1227 (1991).

    Fedora core 12, http://fedoraproject.org/.

    Foster, I., and Kesselman, C., The Grid: Blueprint for a New Computing Infrastructure, Elsevier Inc, (2004)

    GL4Java API, http://gl4java.sourceforge.net/.

    gLite (2006), http://glite.web.cern.ch/glite/.

    Global Grid Forum (2002), http://www.ggf.org/.

    Globus Toolkit 4 (2005), http://www.globus.org/toolkit/docs/4.2/4.2.1/.

    Hajjar, J. F., and Abel, J. F., “Parallel Processing of Central Difference Transient Analysis for Three-Dimensional Nonlinear Framed Structures”, Communications in Applied Numerical Methods, Vol. 5, No. 1, pp. 39-46 (1989)

    JDOM (2000), http://www.jdom.org/.

    JSR 168 (2002), http://jcp.org/en/jsr/detail?id=168

    JSR 286 (2005), http://jcp.org/en/jsr/detail?id=286

    Krishnan, S., Bramley, R., Gannon, D., Ananthakrishnan, R., Govindaraju, M., Slominski, A., Simmhan, Y., Alameda, J., Alkire, R., Drews, T., and Webb, E., “The XCAT science portal”, Scientific Programming, Vol. 10, No. 4, pp. 303-317 (2002)

    Kwon, O. S., Nakata, N., Elnashai, A. S., and Spencer, B., “A Framework for Multi-Site Distributed Simulation and Application to Complex Structural Systems”, Journal of Earthquake Engineering, Vol. 9, No. 5, pp. 741-753 (2005)

    Kwon, O. S., Elnashai, A. S., and Spencer, B. F., “A Framework for Distributed Analytical and Hybrid Simulations”, Structural Engineering and Mechanics, Vol. 30, No. 3, pp. 331-350 (2008)

    Lam, K. P., Mahdavi A., Gupta, S., Wong, N. H., Brahme, R., and Kang, Z., “Integrated and Distributed Computational Support for Building Performance Evaluation”, Advances in Engineering Software, Vol. 33, No. 4, pp. 199-206 (2002)

    Lam, K. P., Wong, N. H., Mahdavi, A., Chan, K. K., Kang, Z., and Gupta, S., “SEMPER-II: An Internet-Based Multi-Domain Building Performance Simulation Environment for Early Design Support”, Automation in Construction, Vol. 13, No. 5 SPEC. ISS., pp. 651-663 (2004)

    Li, Y., Xu, X., and Qiu, Q., “FEM-Based Structure Optimization with Grid-Enabled Analysis Environment”, Proceedings of The 6th World Congress on Intelligent Control and Automation, WCICA 2006 (2006)

    Foster, I., and Kesselman, C., The Grid: Blueprint for a New Computing Infrastructure, Elsevier Inc (2004)

    Modak, S. and Sotelino, E. D., “The Iterative Group Implicit Algorithm for Parallel Transient Finite Element Analysis”, International Journal for Numerical Methods in Engineering, Vol. 47, No. 4, pp. 869-885 (2000)

    Salahuddin, M., Hung, T., Soh, H., Sulaiman, E., Soon, O. Y., Sung, L. B., and Yunxia, R., “Grid-Based PSE for Engineering of Materials (GPEM)”, Proceedings of Seventh IEEE International Symposium on Cluster Computing and the Grid (CCGrid 2007), pp. 309-316 (2007)

    Novotny, J., “The Grid Portal Development”, Concurrency Computation Practice and Experience, Vol. 14, No. 13-15, pp. 1129-1144 (2002)

    Nuggehally, M., Liu, Y. J., Chaudhari, S. B., and Thampi, P. “An Internet-Based Computing Platform for The Boundary Element Method”, Advances in Engineering Software, Vol. 34, No. 5, pp. 261-269 (2003)

    OGSA (2002), http://www.oasis-open.org/.

    OpenGL 1.2 API (1998), http://www.sgi.com/products/software/opengl/

    Pan, P., Tada, M., and Nakashima, M., “Online Hybrid Test by Internet Linkage of Distributed Test-Analysis Domains”, Earthquake Engineering & Structural Dynamics, Vol. 34, No. 11, pp. 1407-1425 (2005)

    Peng, J., and Law, K. H., “A Prototype Software Framework for Internet-Enabled Collaborative Development of a Structural Analysis Program”, Engineering With Computers, Vol. 18, No. 1, pp. 38-49 (2002)

    Peng, J., and Law, K. H., “Building Finite Element Analysis Programs in Distributed Services Environment”, Computers and Structures, Vol. 82, No. 22, pp. 1813-1833 (2004)

    Wang, K. J., Tsai, K. C., Wang, S. J., Cheng, W. C., and Yang, Y. S., “ISEE: Internet-Based Simulation for Earthquake Engineering - PartII: The Application Protocol Approach Earthquake”, Engineering and Structural Dynamics, Vol. 36, No. 15, pp. 2307-2323 (2007)

    Wang, S., Liu, Y., Wilkins-Diehr N., and Martin, S., “Simplegrid Toolkit: Enabling Geosciences Gateways to Cyberinfrastructure”, Computers and Geosciences, Vol. 35, No. 12, pp. 2283-2294 (2009)

    WSRF Technical Committee, http://www.oasis-poen.org/committees/tc_home/.

    Singh, I., Stearns, B., and Johnson, M., Designing Enterprise Applications with the J2EETM Platform, Second Edition, Addison-Wesley (2002)

    Smart, L., and Catlett, C. E., “Metacomputing”, Communications of the ACM, Vol. 35, No. 6, pp. 44-52 (1992)

    Song, W., Keane, A., Eres, H., Pound, G., and Cox, S., “Two Dimensional Airfoil Optimization Using CFD in A Grid Computing Environment”, International Conference on Parallel and Distributed Computing (Euro-Par 2003, LNCS 2790) (2003)

    Spenser, Jr. B, Finholt, T. A., Foster, I., Kesselman, C., Beldica, C., Futrelle, J., Gullapalli, S., Hubbard, P., Liming, L., Marcusiu, D., Pearlman, L., Severance, C., and Yang, G., “Neesgird: a Distributed Collaboratory for Advanced Earthquake Engineering Experiment and Simulation”, 13th World Conference on Earthquake Engineering, Vancouver, B. C., Canada (2004)

    Suzumura, T., Nakada, H., Saito, M., Matsuoka, S., Tanaka, Y., and Sekiguchi, S., “The Ninf Portal An Automatic Generation Tool for Grid Portals”, Proceedings of The Joint ACM Java Grande - ISCOPE Conference, 1-7 (2002)

    TeraGrid (2001), https://www.teragrid.org/.

    Torque (2002), http://db.apache.org/torque/

    UNICORE (2002), http://www.unicore.eu/.

    Virtual Data Toolkit (2003), http://vdt.cs.wisc.edu/.

    Von Laszewski, G., Foster, I., Gawor, J., Lane, P., “A Java Commodity Grid Kit”, Concurrency Computation Practice and Experience, Vol. 12, No. 8-9, pp. 645-662 (2001)

    X.509 (1988), http://en.wikipedia.org/wiki/X.509

    Yang, Y. S., Hsieh, S. H., Tsai, K. C., Wang, S. J., Wang, K. J., Cheng, W. C., Hsu, C. W., “ISEE: Internet-Based Simulation for Earthquake Engineering - PartI: Database Approach” Earthquake Engineering & Structural Dynamics, Vol. 36, No. 15, pp. 2291-2306 (2007)

    Yang, Y., Lu, J., and Elgamal, A. A., “Web-Based Platform for Computer Simulation of Seismic Ground Response”, Advances in Engineering Software, Vol. 35, No. 5, pp. 249-259 (2004)

    Youn C., Kaiser T., Seber, D., and Santini C., “Web-Based Simulating System for Modeling Earthquake Seismic Wavefields on The Grid”, Computers and Geosciences, Vol. 34, No. 12, pp. 1936-1946 (2008)

    Zheng, Y., Song, G., Zhang, J., and Chen, J., “An Enabling Environment for Distributed Simulation and Visualization”, Proceedings of the Fifth IEEE/ACM International Workshop on Grid Computing, Pittsburgh, USA (2004)

    QR CODE