簡易檢索 / 詳目顯示

研究生: 黃俊淇
Chun-Chi Huang
論文名稱: 同時添加不同粒徑碳化矽之鎂基複合材料強度之研究
A study on the strength of magnesium-based composites with bimodal particle sizes of silicon carbide
指導教授: 丘群
Chun Chiu
口試委員: 王朝正
Chaur-Jeng Wang
陳士勛
Shih-Hsun Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 80
中文關鍵詞: AZ91合金碳化矽機械性質同時添加不同粒徑強化相
外文關鍵詞: AZ91 alloy, Silicon carbide, Mechanical properties, bimodal size
相關次數: 點閱:295下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究使用AZ91合金作為基材,使用粒徑尺寸50 nm與1 μm SiC顆粒,固定添加碳化矽比例2 wt.%分別製成單一粒徑尺寸(50 nm、1 μm)複合材料與同時添加不同粒徑尺寸(50 nm+1 μm)複合材料,以攪拌鑄造的方式製成鎂基複合材料,並對成分、顯微結構、機械性質進行分析,探討同時添加不同粒徑碳化矽之比例對AZ91合金影響。
    研究結果顯示,SiC顆粒製成之鎂基複材,其相組成均為α-Mg、Mg17Al12、Al-Mn相及SiC。透過顯微結構觀察發現,添加SiC具有晶粒細化及提高共晶相生成的作用,複合材料的晶粒尺度由420 μm下降至94 μm,共晶比例由23%提升至40%。此外1 μm粒徑尺寸碳化矽顆粒有相互團聚的現象,當添加量超過1 wt.%時碳化矽顆粒會於晶界處大量團聚形成孔洞,造成複合材料抗拉強度與延性下降。本研究最佳之不同粒徑SiC添加比例為同時添加1 wt.% 1 μm與1 wt.% 50 nm,SiC在材料內均勻分布,材料內部無孔洞,與AZ91合金相比其降伏強度由57 MPa增加至115 MPa, 抗拉強度由86 MPa增加至195 MPa,伸長率由1.1%增加至4.7%。


    In this study, AZ91 alloy was used as the matrix, and SiC particles with different amount and particle size were used as reinforcement. The magnesium-based composite material was prepared by stirring casting. SiC particles with particle size of 50 nm and 1 μm, and a fixed amount of 2 wt%, was used to make a single particle size (50 nm, 1 μm) composite and with bimodal particle size (50 nm+ 1 μm) composite materials. Analysis of composition, microstructure, and mechanical properties was performed to study the effect of bimodal size of SiC on the AZ91 alloy.
    The results show that the phase content of magnesium-based composites was α-Mg, Mg17Al12, Al-Mn particles and SiC. Through the microstructure observation, it was found that the addition of SiC resulted in grain refinement and increase of eutectic phase. The grain size of the composite decreased from 420 μm to 94 μm, and the eutectic ratio increased from 23% to 40%. In addition, the 1 μm particle size SiC particles have agglomeration. When the amount of SiC exceeds 1 wt.%, the SiC particles will agglomerate at a large amount at the grain boundary to form pores, resulting in a decrease in tensile strength and ductility of the composite. In this study, the optimum ratio of SiC added with different particle sizes is 1 wt.% 1 μm and 1 wt.% 50 nm. SiC is evenly distributed in the composite material. There is no pore inside the material. Compared with AZ91 alloy, the yield strength increased from 57. MPa to 115 MPa, the ultimate strength increased from 86 MPa to 195 MPa, and the elongation increased from 1.1% to 4.7%.

    摘要 I ABSTRACT II 目錄 III 圖目錄 VII 表目錄 X 第一章 序論 1 1.1 前言 1 1.2 研究動機與目的 2 第二章 文獻回顧 3 2.1 鎂與鎂合金之介紹 3 2.1.1 鎂 3 2.1.2鎂合金之特性 3 2.1.3合金元素添加對鎂之影響 4 2.1.4鎂合金之符號標示 7 2.2 鎂合金的強化方式與強化機制 8 2.2.1 鎂合金強化方式 8 2.2.1.1 合金法 8 2.2.1.2 塑性變形 8 2.2.1.3 添加強化相製備複合材料 9 2.2.2 鎂合金強化機制 10 2.2.2.1 晶粒細化 10 2.2.2.2 固溶強化 11 2.2.2.3 析出強化 11 2.2.2.4 散佈強化 12 2.2.2.5 熱膨脹係數差異影響 13 2.3 鎂基複合材料製程方式 14 2.3.1 鑄造 14 2.3.2 粉末冶金 16 2.4 強化相碳化矽團聚影響因素 17 2.4.1 凡得瓦力 17 2.4.2 熱動能 17 2.5 同時添加不同強化相文獻回顧 18 3.1 實驗流程 20 3.2 實驗材料 22 3.3 熔煉設備與步驟 23 3.3.1 鑄造熔煉爐 23 3.3.2 鎂基複合材料製備步驟 25 3.4 試片製備流程 26 3.4.1 光學顯微鏡試片 26 3.4.2電子顯微鏡試片 27 3.4.3 X光繞射儀試片 28 3.5 分析儀器 29 3.5.1 光學顯微鏡 29 3.5.2 電子顯微鏡 29 3.5.3 X光繞射分析 31 3.6 密度量測和孔隙率計算 33 3.7 機械性質測試 34 3.7.1 洛氏硬度機 34 3.7.2 落地型動態材料試驗機 35 3.7.3 拉伸試片 37 4.1顯微組織觀察與成分分析 38 4.1.1 AZ91合金原材分析 38 4.1.2 鎂基複合材料分析 43 4.2 AZ91合金與鎂基複合材料中共晶結構分率與晶粒尺度計算 58 4.3 AZ91合金與鎂基複合材料中之孔隙率計算 61 4.4 機械性質測試 63 4.4.1 洛氏硬度試驗 63 4.4.2 拉伸試驗 64 4.5 破斷面顯微觀察 66 4.6 實驗結果討論 73 第五章 結論 76 參考文獻 77

    [1] B. L. Mordike, T. Ebert, “ Magnesium: Properties applications potential,” Materials Science and Engineering: A, vol. 302, Issue 1, pp. 37-45, 2001.
    [2] G. Garcés, E. Onorbe, P. Pérez, I. A. Denks, P. Adeva, “ Evolution of internal strain during plastic deformation in magnesium matrix composites,” Materials Science and Engineering: A, vol. 523, Issues 1–2, pp. 21-26, 2009.
    [3] S. Q. Zhu, H. G. Yan, X. Z. Liao, S. J. Moody, G. Sha, Y. Z. Wu, S. P. Ringer, “ Mechanisms for enhanced plasticity in magnesium alloys,” Acta Materialia, vol. 82, pp. 344-355, 2015.
    [4] T. Jin, Z. Zhou, J. Qiu, Z. Wang, D. Zhao, X. Shu, S. Yan, “ Investigation on the yield behavior of AZ91 magnesium alloy,” Journal of Alloys and Compounds, vol. 738, pp. 79-88, 2018.
    [5] J. U. Lee, S. H. Kim, Y. J. Kim, S. H. Park, “ Effects of homogenization time on aging behavior and mechanical properties of AZ91 alloy,” Materials Science and Engineering: A, vol. 714, pp. 49-58, 2018.
    [6] M. Zha, H. M. Zhang, C. Wang, H. Y. Wang, E. B. Zhang, Q. C. Jiang, “ Prominent role of a high volume fraction of Mg17Al12 particles on tensile behaviors of rolled Mg–Al–Zn alloys,” Journal of Alloys and Compounds, vol. 728, pp. 682-693, 2017.
    [7] M. C. Zhao, P. Schmutz, S. Brunner, M. Liu, G. l. Song, A. Atrens, “ An exploratory study of the corrosion of Mg alloys during interrupted salt spray testing,” Corrosion Science, vol. 51, Issue 6, pp. 1277-1292, 2009.
    [8] A. Viswanath, H. Diering, K. K. Ajith Kumar, U. T. S. Pillai, B. C. Pai, “ Investigation on mechanical properties and creep behavior of stir cast AZ91-SiCp composites,” Journal of Magnesium and Alloys, vol. 3, Issue 1, pp. 16-22, 2015.
    [9] M. J. Shen, X. J. Wang, T. Ying, K. Wu, W. J. Song, “ Characteristics and mechanical properties of magnesium matrix composites reinforced with micron/submicron/nano SiC particles,” Journal of Alloys and Compounds, vol. 686, pp. 831-840, 2016.
    [10] I. Polmear, D. StJohn, J. F. Nie and M Qian, “ Light Alloys (Fifth Edition) Metallurgy of the Light Metals,” Metallurgy of the Light Metals, pp. 1-29, 2017.
    [11] I. Polmear, D. StJohn, J. F. Nie and M Qian, “ 6 - Magnesium Alloys,” Light Alloys (Fifth Edition) Metallurgy of the Light Metals, pp. 287-367, 2017.
    [12] I. Polmear, D. StJohn, J. F. Nie and M Qian, “ 3 - Casting of Light Alloys,” Light Alloys (Fifth Edition) Metallurgy of the Light Metals, pp. 109-156, 2017.
    [13] ASTM International, “ Standard Practice for Temper Designations of Magnesium Alloys, Cast and Wrought,” ASTM Standard B275-05.
    [14] Junjie Gao, Jie Fu, Nan Zhang, Yu'an Chen, “ Structural features and mechanical properties of Mg-Y-Zn-Sn alloys with varied LPSO phases,” Journal of Alloys and Compounds, vol. 768, pp. 1029-1038, 2018
    [15] Z. T. Li, X. G. Qiao, C. Xu, S. Kamado, M. Y. Zheng, A. A. Luo, “ Ultrahigh strength Mg-Al-Ca-Mn extrusion alloys with various aluminum contents,” Journal of Alloys and Compounds, vol. 792, pp. 130-141, 2019.
    [16] F. Cao, J. Zhang, X. Ding, G. Xue, S. Liu, C. Sun, R. Su, X. Teng, “ Mechanical properties and microstructural evolution in a superlight Mg-6.4Li-3.6Zn-0.37Al-0.36Y alloy processed by multidirectional forging and rolling,’’ Materials Science and Engineering: A, vol. 760, pp. 377-393, 2019.
    [17] M. Habibnejad-Korayem, R. Mahmudi, W. J. Poole, “ Enhanced properties of Mgbased nano-composites reinforced with Al2O3 nano-particles,’’ Mater. Sci. Eng.: A, vol. 519 , pp. 198–203, 2009.
    [18] G. Garcés, M. Rodríguez, P. Pérez, P. Adeva, “ High temperature mechanical properties of Mg–Y2O3 composite: competition between texture and reinforcement contributions,’’ Compos. Sci. Technol, vol. 67 , pp. 632–637, 2007.
    [19] R. A. Saravanan, M. K Surappa, “ Fabrication and characterisation of pure magnesium-30 vol.% SiCP particle composite,’’ Materials Science and Engineering: A, vol. 276, Issues 1–2, pp. 108-116, 2000.
    [20] W. Yuan, S. K. Panigrahi, J.-Q. Su, R. S. Mishra, “ Influence of grain size and texture on Hall–Petch relationship for a magnesium alloy,” Scripta Materialia, vol. 65, Issue 11, pp. 994-997, 2011.
    [21] Q. Yang, F. Bu, X. Qiu, Y. Li, W. Li, W. Sun, X. Liu, J. Meng, “ Strengthening effect of nano-scale precipitates in a die-cast Mg–4Al–5.6Sm–0.3Mn alloy,” Journal of Alloys and Compounds, vol. 665, pp. 240-250, 2016.
    [22] Y. C. Zhao, M. C. Zhao, R. Xu, L. Liu, J. X. Tao, C. Gao, C. Shuai, Andrej Atrens, “ Formation and characteristic corrosion behavior of alternately lamellar arranged α and β in as-cast AZ91 Mg alloy,”Journal of Alloys and Compounds, vol. 770, pp. 549-558, 2019.
    [23] YE Xiang-ping, LI Ying-lei, WENG Ji-dong, CAI Ling-cang, LIU Cang-li, ‘‘ Research Status on Strengthening Mechanism of Particle-reinforced Metal Matrix Composites,’’ Journal of Materials Engineering, vol.46, pp. 28-37, 2018.
    [24] K. Deng, J. Shi, C. Wang, X. Wang, Y. Wu, K. Nie, K. Wu, ‘‘ Microstructure and strengthening mechanism of bimodal size particle reinforced magnesium matrix composite,’’ Composites Part A: Applied Science and Manufacturing, vol. 43, Issue 8, pp. 1280-1284, 2012.
    [25] R. A Saravanan, M. K Surappa, “ Fabrication and characterisation of pure magnesium-30 vol.% SiCP particle composite,” Materials Science and Engineering: A, vol. 276, Issues 1–2, pp. 108-116, 2000.
    [26] A. Maleki, B. Niroumand, A. Shafyei, “ Effects of squeeze casting parameters on density, macrostructure and hardness of LM13 alloy,” Materials Science and Engineering: A, vol. 428, Issues 1–2, pp. 135-140, 2006.
    [27] H. Z. Ye, X. Y. Liu, “ Review of recent studies in magnesium matrix composites,” Journal of Materials Science, vol. 39, pp. 6153-6171, 2004.
    [28] B. W. Chua, L. Lu, M. O. Lai, “ Influence of SiC particles on mechanical properties of Mg based composite,” Composite Structures, vol. 47, Issues 1–4, pp. 595-601, 1999.
    [29] Lian-Yi Chen, Jia-Quan Xu, Hongseok Choi, Marta Pozuelo, Xiaolong Ma, Sanjit Bhowmick, Jenn-Ming Yang, Suveen Mathaudhu , Xiao-Chun Li, “ Influence of SiC particles on mechanical properties of Mg based composite,” Nature, vol. 528, pp. 539-543, 2015.
    [30] M. J. Shen, X. J. Wang, C. D. Li, M. F. Zhang, X. S. Hu, M. Y. Zheng, K. Wu, “ Effect of bimodal size SiC particulates on microstructure and mechanical properties of AZ31B magnesium matrix composites,” Materials & Design, vol. 52, pp. 1011-1017, 2013
    [31] M. J. Shen, X. J. Wang, M. F. Zhang, M. Y. Zheng, K. Wu, “ Significantly improved strength and ductility in bimodal-size grained microstructural magnesium matrix composites reinforced by bimodal sized SiCp over traditional magnesium matrix composites,” Composites Science and Technology, vol. 118, pp. 85-93, 2015.
    [32] D. R. Asklend, P. Phulé, “ The Science and Engineering of Materials 4th Edition” ,2005。
    [33] 鄭信民、林麗娟,"X光繞射應用簡介",工業材料雜誌 181期, 民國91年。
    [34] H. K. Srivastva, P. K. Bhardwaj, R. P. Gond, V. Tiwari, R. Saroj, “ Magnesium Matrix Composite: Problems and Possibility,” International Journal of Research, vol. 03, pp. 401-405, 2015.
    [35] ASTM International, “ ASTM E8/E8M - 09 Standard Test Methods for Tension Testing of Metallic Materials”, 2011.
    [36] S. N. Chen, W. Yang, H. Yu, Y. L. Zhang, “ Effects of microstructure modification and pressurized solidification on mechanical property of AZ91 alloy,” Journal of Alloys and Compounds, vol. 611, pp. 1-6, 2014.
    [37] R. Günther, Ch. Hartig, R. Bormann, “ Grain refinement of AZ31 by (SiC)P: Theoretical calculation and experiment,” Acta Materialia, vol. 54, Issue 20, pp. 5591-5597, 2006.
    [38] K. B. Nie, X. J. Wang, X. S. Hu, L. Xu, K. Wu, M. Y. Zheng, “ Microstructure and mechanical properties of SiC nanoparticles reinforced magnesium matrix composites fabricated by ultrasonic vibration,” Materials Science and Engineering: A, vol. 528, Issue 15, pp. 5278-5282, 2011.
    [39] M. Manoharan, S. C. V. Lim, M. Gupta, “ Application of a model for the work hardening behavior to Mg/SiC composites synthesized using a fluxless casting process,” Materials Science and Engineering A, vol. 333, pp. 243-249, 2002.
    [40] Jie Lan, Yong Yang, Xiaochun Li, “ Microstructure and microhardness of SiC nanoparticles reinforced magnesium composites fabricated by ultrasonic method,” Materials Science and Engineering: A, vol. 386, Issues 1–2, pp. 284-290, 2004.
    [41] 莊東漢,「材料破損分析」,五南出版社,2007.
    [42] S. Lun Sin, D. Dubé, R. Tremblay, “ Characterization of Al–Mn particles in AZ91D investment castings,” Materials Characterization, vol. 58, Issue 10, pp. 989-996, 2007.

    無法下載圖示 全文公開日期 2024/08/20 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE