簡易檢索 / 詳目顯示

研究生: 美蘭妮
Maulani Safitri
論文名稱: 透過常壓電漿技術沈積金屬膜層
Deposition of metallic layers by atmospheric pressure plasma technology
指導教授: 郭俞麟
Yu-Lin Kuo
口試委員: 王丞浩
Chen-Hao Wang
蔡榮庭
Jung-Ting Tsai
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 74
外文關鍵詞: metallic layer, deposition
相關次數: 點閱:161下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  • Thermoelectrics are gaining more attention to develop and improve their size, fabrication, and application. Among the many processes that can be employed to fabricate the thermoelectric materials, up to date, it has been rare to apply the atmospheric pressure plasma jet (APPJ). Atmospheric pressure plasma jet (APPJ) is a type of non-thermal plasma. APPJ is more effective than vacuum because atmospheric plasma does not require specific space, unlike chamber reactions. Surface treatments and modifications such as surface wettability, surface cleaning, surface etching, surface coating, and so on are permissible. According to the APPJ, the APPJ was used in this study to deposition metallic layers by dissolving precursors and connecting them to the plasma head. It carried the precursor's droplet deposited onto the alumina surface by using Ar + 2%H2 as a gas source and Ar as a carrier gas with two kind scanning time, 150 times and 180 times. Initially, the plasma properties of the APPJ that deposited the metallic (Ag, Cu, Ni) layers were investigated using a K-type thermocouple to measure the plasma gas temperature and optical electron spectroscopy to observe the reactive species. The crystal structure was observed using an X-ray diffractionmeter, the morphology and element distribution were observed using field- scanning emission microscopy, and the thickness was observed using optical microscopy. Furthermore, the electrical characteristics were examined using a 4-point probe to detect conductivity and resistivity, and an additional exsisting method for testing the thermoelectric generator. The temperature’s result is shown by introducing the precursor into the system, increasing the temperature of plasma gas. The result shows that using APPJ has successfully deposited porous metallic layers of Ag, Cu, and Ni. Moreover, by depositing a metallic layer onto alumina, it becomes more conductive. However, future work intends to study the electricity, we haven’t succeeded in generating electricity by applying a different temperature as the principle of a thermoelectric generator.

    Cover Page i Acknowledgment ii Abstract iii Table of Content v List of Figure vii List of Table xi Chapter I Introduction 1 1.1 Background and Motivation 1 1.2 Research Objective 2 1.3 Outline of the Thesis 2 Chapter II Literature Review 4 2.1 Priciple of thermolectric 4 2.2 Application of thermoelectric generator 5 2.3 History of thermoelectric 6 2.4 Types Thermoelectric based on the fabrication 8 2.4.1 Bulky materials 8 2.4.2 Photolithography 10 2.4.3 Electroplating 11 2.4.4 Physical Vapour Deposition (PVD) and Chemical Vapour Deposition (CVD) 11 2.4.5 Printing 13 2.5 Thermoelectric materials 14 2.6 Introduction of Plasma 16 2.6.1 Classification of Electron Plasma Temperature 17 2.6.2 Classsification of Discrage Plasma Types 18 2.6.3 Classification of Collision in Plasma 19 2.6.4 Plasma reactive species 20 Chapter III Methodology 22 3.1 Precusor preparations and deposited thermoelectric materials 22 3.2 Plasma Properties Measurement 24 3.3 Morphology Analysis 24 3.4 Crystallographic Structure Analysis 24 3.5 Electrical Analysis 25 3.6 Sequence of Envent 26 Chapter IV Results and Discussions 28 4.1 Plasma properties 28 4.1.1 Plasma temperature 28 4.1.2 Plasma reactive species 30 4.2 Surface properties 39 4.2.1 Surface Wettability 39 4.2.2 Surface Morphology 40 1.2.3 Mapping 42 4.2.4 Cross-sectional surface 45 4.3 Structural properties 49 4.4 Electrical properties 52 4.5 Mechanism Error! Bookmark not defined. Chapter V Conclusions and Future Development 57 Reference 59

    [1] R. Fortulan, S.A. Yamini, Recent progress in multiphase thermoelectric materials, Materials (Basel). 14 (2021) 1–27. https://doi.org/10.3390/ma14206059.
    [2] X. Chen, W. Dai, T. Wu, W. Luo, J. Yang, W. Jiang, L. Wang, Thin film thermoelectric materials: Classification, characterization, and potential for wearable applications, Coatings. 8 (2018). https://doi.org/10.3390/coatings8070244.
    [3] M. Wolf, J. Flormann, T. Steinhoff, G. Gerstein, F. Nürnberger, H.J. Maier, A. Feldhoff, Cu-Ni-Based Alloys from Nanopowders as Potent Thermoelectric Materials for High-Power Output Applications, Alloys. 1 (2022) 3–14. https://doi.org/10.3390/alloys1010002.
    [4] S. Li, K. Snyder, M.S. Akhanda, R. Martukanitz, M. Mitra, J. Poon, M. Zebarjadi, Cost-efficient copper-nickel alloy for active cooling applications, Int. J. Heat Mass Transf. 195 (2022) 123181. https://doi.org/10.1016/j.ijheatmasstransfer.2022.123181.
    [5] S. Shimizu, Y., Mizoshiri, M., Mikami, M., Sakurai, J., & Hata, Fabrication of Copper/Copper-Nickel thin-film thermoelectric generators with energy storage devices, J. Phys. Conf. Ser. 1052 (2018) 4. https://doi.org/doi :10.1088/1742-6596/1052/1/012032.
    [6] W.L. Lee, P.J. Shih, C.C. Hsu, C.L. Dai, Fabrication and characterization of flexible thermoelectric generators using micromachining and electroplating techniques, Micromachines. 10 (2019) 1–10. https://doi.org/10.3390/mi10100660.
    [7] G. Fu, L. Zuo, J. Longtin, C. Nie, Y. Chen, M. Tewolde, S. Sampath, Thermoelectric properties of magnesium silicide deposited by use of an atmospheric plasma thermal spray, J. Electron. Mater. 43 (2014) 2723–2730. https://doi.org/10.1007/s11664-014-3103-8.
    [8] H. Lee, S.J. Han, R. Chidambaram Seshadri, S. Sampath, Thermoelectric properties of in-situ plasma spray synthesized sub-stoichiometry TiO2-x, Sci. Rep. 6 (2016). https://doi.org/10.1038/srep36581.
    [9] H. Yu, Y. Zhang, A. Wong, I.M. De Rosa, H.S. Chueh, M. Grigoriev, T.S. Williams, T. Hsu, R.F. Hicks, Atmospheric and Vacuum Plasma Treatments of Polymer Surfaces for Enhanced Adhesion in Microelectronics Packaging, Adhes. Microelectron. 9781118831 (2014) 137–172. https://doi.org/10.1002/9781118831373.ch4.
    [10] S.D. Kencana, Y.L. Kuo, Y.W. Yen, E. Schellkes, W. Chuang, Improving the solder wettability via atmospheric plasma technology, Proc. - Electron. Components Technol. Conf. 2019-May (2019) 2067–2071. https://doi.org/10.1109/ECTC.2019.00317.
    [11] J.B. Song, J.T. Kim, S.G. Oh, J.Y. Yun, Contamination particles and plasma etching behavior of atmospheric plasma sprayed Y2O3 and YF3 coatings under NF3 plasma, Coatings. 9 (2019) 4–11. https://doi.org/10.3390/COATINGS9020102.
    [12] Y.L. Kuo, S.D. Kencana, Y.J. Lin, Atmospheric pressure plasma jet fabricating of porous silver electrocatalyst as a promising approach to the creation of cathode layers of low temperature solid oxide fuel cells, Surf. Coatings Technol. 410 (2021) 126810. https://doi.org/10.1016/j.surfcoat.2020.126810.
    [13] A. Uricchio, F. Fanelli, Low-temperature atmospheric pressure plasma processes for the deposition of nanocomposite coatings, Processes. 9 (2021). https://doi.org/10.3390/pr9112069.
    [14] D. Enescu, Thermoelectric Energy Harvesting: Basic Principles and Applications, Intech. (2019) 1–37. https://doi.org/10.5772/intechopen.83495.
    [15] N. Jaziri, A. Boughamoura, J. Müller, B. Mezghani, F. Tounsi, M. Ismail, A comprehensive review of Thermoelectric Generators: Technologies and common applications, Energy Reports. 6 (2020) 264–287. https://doi.org/10.1016/j.egyr.2019.12.011.
    [16] M. Sattar, W.H. Yeo, Recent Advances in Materials for Wearable Thermoelectric Generators and Biosensing Devices, Materials (Basel). 15 (2022). https://doi.org/10.3390/ma15124315.
    [17] T.M. Ward, The Thermoelectric Effect – Seebeck & Peltier Effects, (n.d.). https://www.youtube.com/watch?v=cZodo_BxBIo (accessed July 19, 2023).
    [18] L. Liu, Feasibility of large-scale power plants based on thermoelectric effects, New J. Phys. 16 (2014). https://doi.org/10.1088/1367-2630/16/12/123019.
    [19] N. Van Toan, T.T.K. Tuoi, H. Sui, N.H. Trung, K.F. Samat, T. Ono, Ultra-flexible thermoelectric generator based on silicone rubber sheet and electrodeposited thermoelectric material for waste heat harvesting, Energy Reports. 8 (2022) 5026–5037. https://doi.org/10.1016/j.egyr.2022.03.121.
    [20] A. Mazzetti, M. Gianotti Pret, G. Pinarello, L. Celotti, M. Piskacev, A. Cowley, Heat to electricity conversion systems for moon exploration scenarios: A review of space and ground technologies, Acta Astronaut. 156 (2019) 162–186. https://doi.org/10.1016/j.actaastro.2018.09.025.
    [21] K. Sztekler, K. Wojciechowski, M. Komorowski, The thermoelectric generators use for waste heat utilization from conventional power plant, E3S Web Conf. 14 (2017). https://doi.org/10.1051/e3sconf/20171401032.
    [22] C. Goupil, H. Ouerdane, K. Zabrocki, W. Seifert, N.F. Hinsche, E. Müller, Thermodynamics and Thermoelectricity, in: Contin. Theory AndModeling Thermoelectr. Elem., 2016: pp. 1–74. https://doi.org/https://doi.org/10.1002/9783527338405.ch1.
    [23] T.E. of E. Britannica, Jean-Charles-Athanase Peltier. Encyclopedia Britannica., (2022). https://www.britannica.com/biography/Jean-Charles-Athanase-Peltier (accessed November 3, 2022).
    [24] H.I. Sharlin, William Thomson, Baron Kelvin., Encycl. Br. (2022). https://www.britannica.com/biography/William-Thomson-Baron-Kelvin (accessed November 4, 2022).
    [25] N.U. Materials Science and Engineering, Brief History of Thermoelectrics, (n.d.). http://thermoelectrics.matsci.northwestern.edu/thermoelectrics/history.html (accessed November 4, 2022).
    [26] M.L. Heilig, United States Patent Office, ACM SIGGRAPH Comput. Graph. 28 (1994) 131–134. https://doi.org/10.1145/178951.178972.
    [27] G.J. Snyder, E.S. Toberer, Complex thermoelectric materials, Nat. Mater. 7 (2008) 105–114. https://doi.org/10.1038/nmat2090.
    [28] H.X. Mi, M.X. Wu, S. Cao, Z.Y. Huang, L. Han, J. Xu, Effect of solder and barrier layer elements on the thermoelectric properties of Bi0.5Sb1.5Te3, Mater. Res. Express. 6 (2019). https://doi.org/10.1088/2053-1591/ab3cd5.
    [29] U. Pelz, J. Jaklin, R. Rostek, M. Kröner, P. Woias, Novel Fabrication Process for Micro Thermoelectric Generators (μTEGs), J. Phys. Conf. Ser. 660 (2015). https://doi.org/10.1088/1742-6596/660/1/012084.
    [30] D. Merten, K.T. Kallis, F.J. Giebel, H.L. Fiedler, P. Lilienthal, Lithography independent nanostructuring of Bi 2 Te 3 thermoelectric devices, (2017) 3–6.
    [31] K.A. Morgan, T. Tang, I. Zeimpekis, A. Ravagli, C. Craig, J. Yao, Z. Feng, D. Yarmolich, C. Barker, H. Assender, D.W. Hewak, High-throughput physical vapour deposition flexible thermoelectric generators, Sci. Rep. 9 (2019) 1–9. https://doi.org/10.1038/s41598-019-41000-y.
    [32] J. Zhu, Z. Xu, L. Jia, Design and fabrication of 3D flexible thermoelectric energy generator using chemical vapor deposition method based on paper substrate, 2018 Int. Symp. Sens. Instrum. IoT Era, ISSI 2018. (2018) 15–18. https://doi.org/10.1109/ISSI.2018.8538256.
    [33] B. Chen, M. Kruse, B. Xu, R. Tutika, W. Zheng, M.D. Bartlett, Y. Wu, J.C. Claussen, Flexible thermoelectric generators with inkjet-printed bismuth telluride nanowires and liquid metal contacts, Nanoscale. 11 (2019) 5222–5230. https://doi.org/10.1039/c8nr09101c.
    [34] D. Ding, F. Sun, F. Xia, Z. Tang, A high-performance and flexible thermoelectric generator based on the solution-processed composites of reduced graphene oxide nanosheets and bismuth telluride nanoplates, Nanoscale Adv. 2 (2020) 3244–3251. https://doi.org/10.1039/d0na00118j.
    [35] J. Zhao, X. Zhao, R. Guo, Y. Zhao, C. Yang, L. Zhang, D. Liu, Y. Ren, Preparation and Characterization of Screen-Printed Cu2S/PEDOT:PSS Hybrid Films for Flexible Thermoelectric Power Generator, Nanomaterials. 12 (2022) 2430. https://doi.org/10.3390/nano12142430.
    [36] S. Do Kwon, B.K. Ju, S.J. Yoon, J.S. Kim, Fabrication of bismuth telluride-based alloy thin film thermoelectric devices grown by metal organic chemical vapor deposition, J. Electron. Mater. 38 (2009) 920–924. https://doi.org/10.1007/s11664-009-0704-8.
    [37] D.W. Newbrook, S.P. Richards, V.K. Greenacre, A.L. Hector, W. Levason, G. Reid, C.H.K. De Groot, R. Huang, Selective Chemical Vapor Deposition Approach for Sb2Te3Thin Film Micro-thermoelectric Generators, ACS Appl. Energy Mater. 3 (2020) 5840–5846. https://doi.org/10.1021/acsaem.0c00766.
    [38] H.B. Lee, H.J. Yang, J.H. We, K. Kim, K.C. Choi, B.J. Cho, Thin-film thermoelectric module for power generator applications using a screen-printing method, J. Electron. Mater. 40 (2011) 615–619. https://doi.org/10.1007/s11664-010-1481-0.
    [39] Z. Cao, E. Koukharenko, R.N. Torah, S.P. Beeby, Exploring screen printing technology on thermoelectric energy harvesting with printing copper-nickel and bismuth-antimony thermocouples, 2013 Transducers Eurosensors XXVII 17th Int. Conf. Solid-State Sensors, Actuators Microsystems, TRANSDUCERS EUROSENSORS 2013. (2013) 478–481. https://doi.org/10.1109/Transducers.2013.6626807.
    [40] Z. Cao, E. Koukharenko, R.N. Torah, J. Tudor, S.P. Beeby, Flexible screen printed thick film thermoelectric generator with reduced material resistivity, J. Phys. Conf. Ser. 557 (2019) 6–11. https://doi.org/10.1088/1742-6596/557/1/012016.
    [41] P.S. Chang, C.N. Liao, Screen-printed flexible thermoelectric generator with directional heat collection design, J. Alloys Compd. 836 (2020) 155471. https://doi.org/10.1016/j.jallcom.2020.155471.
    [42] S.W. Finefrock, X. Zhu, Y. Sun, Y. Wu, Flexible prototype thermoelectric devices based on Ag2Te and PEDOT:PSS coated nylon fibre, Nanoscale. 7 (2015) 5598–5602. https://doi.org/10.1039/c5nr00058k.
    [43] G. Kogo, B. Xiao, S. Danquah, H. Lee, J. Niyogushima, K. Yarbrough, A. Candadai, A. Marconnet, S.K. Pradhan, M. Bahoura, A thin film efficient pn-junction thermoelectric device fabricated by self-align shadow mask, Sci. Rep. 10 (2020) 1–12. https://doi.org/10.1038/s41598-020-57991-y.
    [44] T. Ozawa, M. Murata, T. Suemasu, K. Toko, Flexible Thermoelectric Generator Based on Polycrystalline SiGe Thin Films, Materials (Basel). 15 (2022). https://doi.org/10.3390/ma15020608.
    [45] P. Phaga, A. Vora-Ud, T. Seetawan, Invention of low cost thermoelectric generators, Procedia Eng. 32 (2012) 1050–1053. https://doi.org/10.1016/j.proeng.2012.02.053.
    [46] S. Rafique, M.R. Burton, N. Badiei, J. Gonzalez-Feijoo, S. Mehraban, M.J. Carnie, A. Tarat, L. Li, Lightweight and Bulk Organic Thermoelectric Generators Employing Novel P-Type Few-Layered Graphene Nanoflakes, ACS Appl. Mater. Interfaces. 12 (2020) 30643–30651. https://doi.org/10.1021/acsami.0c06050.
    [47] S. Lin, L. Zhang, W. Zeng, D. Shi, S. Liu, X. Ding, B. Yang, J. Liu, K. ho Lam, B. Huang, X. Tao, Flexible thermoelectric generator with high Seebeck coefficients made from polymer composites and heat-sink fabrics, Commun. Mater. 3 (2022). https://doi.org/10.1038/s43246-022-00263-1.
    [48] M. Wolf, M. Abt, G. Hoffmann, L. Overmeyer, A. Feldhoff, Ceramic-based thermoelectric generator processed via spray-coating and laser structuring, Open Ceram. 1 (2020) 100002. https://doi.org/10.1016/j.oceram.2020.100002.
    [49] J.Y. Oh, J.H. Lee, S.W. Han, S.S. Chae, E.J. Bae, Y.H. Kang, W.J. Choi, S.Y. Cho, J.O. Lee, H.K. Baik, T. Il Lee, Chemically exfoliated transition metal dichalcogenide nanosheet-based wearable thermoelectric generators, Energy Environ. Sci. 9 (2016) 1696–1705. https://doi.org/10.1039/c5ee03813h.
    [50] Y. Lu, Y. Qiu, Q. Jiang, K. Cai, Y. Du, H. Song, M. Gao, C. Huang, J. He, D. Hu, Preparation and Characterization of Te/Poly(3,4-ethylenedioxythiophene):Poly(styrenesulfonate)/Cu 7 Te 4 Ternary Composite Films for Flexible Thermoelectric Power Generator, ACS Appl. Mater. Interfaces. 10 (2018) 42310–42319. https://doi.org/10.1021/acsami.8b15252.
    [51] Y. Ding, Y. Qiu, K. Cai, Q. Yao, S. Chen, L. Chen, J. He, High performance n-type Ag 2 Se film on nylon membrane for flexible thermoelectric power generator, Nat. Commun. 10 (2019) 1–7. https://doi.org/10.1038/s41467-019-08835-5.
    [52] Q. Gao, W. Wang, Y. Lu, K. Cai, Y. Li, Z. Wang, M. Wu, C. Huang, J. He, High Power Factor Ag/Ag2Se Composite Films for Flexible Thermoelectric Generators, ACS Appl. Mater. Interfaces. 13 (2021) 14327–14333. https://doi.org/10.1021/acsami.1c02194.
    [53] K. Itoigawa, H. Ueno, M. Shiozaki, T. Toriyama, S. Sugiyama, Fabrication of flexible thermopile generator, J. Micromechanics Microengineering. 15 (2005). https://doi.org/10.1088/0960-1317/15/9/S10.
    [54] J. Zhang, W. Zhang, H. Wei, J. Tang, D. Li, D. Xu, Flexible micro thermoelectric generators with high power density and light weight, Nano Energy. 105 (2023) 108023. https://doi.org/10.1016/j.nanoen.2022.108023.
    [55] E. Mu, G. Yang, X. Fu, F. Wang, Z. Hu, Fabrication and characterization of ultrathin thermoelectric device for energy conversion, J. Power Sources. 394 (2018) 17–25. https://doi.org/10.1016/j.jpowsour.2018.05.031.
    [56] K. Minsu, Kim. Dabin, Park. Jooheon, Thermoelectric Generator Using Polyaniline-Coated Sb 2 Se 3 / β -Cu 2 Se Flexible Thermoelectric Films, Polymers (Basel). (2021) 11.
    [57] M.J. Rycroft, Plasma - The fourth state of matter?, Nature. 321 (1986) 466. https://doi.org/10.1038/321466e0.
    [58] M. Domonkos, P. Tichá, J. Trejbal, P. Demo, Applications of cold atmospheric pressure plasma technology in medicine, agriculture and food industry, Appl. Sci. 11 (2021). https://doi.org/10.3390/app11114809.
    [59] C. Tendero, C. Tixier, P. Tristant, J. Desmaison, P. Leprince, Atmospheric pressure plasmas: A review, Spectrochim. Acta - Part B At. Spectrosc. 61 (2006) 2–30. https://doi.org/10.1016/j.sab.2005.10.003.
    [60] D.P. Dowling, Surface Processing Using Cold Atmospheric Pressure Plasmas, Elsevier, 2014. https://doi.org/10.1016/B978-0-08-096532-1.00408-8.
    [61] T. Takamatsu, K. Uehara, Y. Sasaki, H. Miyahara, Y. Matsumura, A. Iwasawa, N. Ito, T. Azuma, M. Kohno, A. Okino, Investigation of reactive species using various gas plasmas, RSC Adv. 4 (2014) 39901–39905. https://doi.org/10.1039/c4ra05936k.
    [62] T.E. of E. Britannica, Alumina., Encycl. Br. (2018). https://www.britannica.com/science/alumina (accessed March 13, 2023).
    [63] H. Xiong, W. Sun, Investigation of droplet atomization and evaporation in solution precursor plasma spray coating, Coatings. 7 (2017) 1–14. https://doi.org/10.3390/coatings7110207.
    [64] R. Unabia, R. Candidato, L. Pawłowski, Current progress in solution precursor plasma spraying of cermets: A review, Metals (Basel). 8 (2018) 1–18. https://doi.org/10.3390/met8060420.
    [65] S.J. Shih, I.C. Chien, Preparation and characterization of nanostructured silver particles by one-step spray pyrolysis, Powder Technol. 237 (2013) 436–441. https://doi.org/10.1016/j.powtec.2012.12.032.
    [66] B. Małecka, A. Łącz, E. Drozdz, A. Małecki, Thermal decomposition of d-metal nitrates supported on alumina, J. Therm. Anal. Calorim. 119 (2015) 1053–1061. https://doi.org/10.1007/s10973-014-4262-9.
    [67] W. Brockner, C. Ehrhardt, M. Gjikaj, Thermal decomposition of nickel nitrate hexahydrate, Ni(NO3)2·6H2O, in comparison to Co(NO3)2·6H2O and Ca(NO3)2·4H2O, Thermochim. Acta. 456 (2007) 64–68. https://doi.org/10.1016/j.tca.2007.01.031.
    [68] Y. Wang, T. Gehring, Q. Jin, J. Dycke, R. Kling, Characterization of Argon/Hydrogen Inductively Coupled Plasma for Carbon Removal over Multilayer Thin Films, Coatings. 13 (2023). https://doi.org/10.3390/coatings13020368.
    [69] S. Das, D.P. Das, C.K. Sarangi, B. Bhoi, B.K. Mishra, J. Ghosh, Optical Emission Spectroscopy Study of Ar-H2 Plasma at Atmospheric Pressure, IEEE Trans. Plasma Sci. 46 (2018) 2909–2915. https://doi.org/10.1109/TPS.2018.2850855.
    [70] S.C. Snyder, G.D. Lassahn, J.D. Grandy, Direct determination of gas velocity and gas temperature in an atmospheric-pressure argon-hydrogen plasma jet, J. Quant. Spectrosc. Radiat. Transf. 107 (2007) 217–225. https://doi.org/10.1016/j.jqsrt.2007.02.003.
    [71] E.A.H. Timmermans, J. Jonkers, A. Rodero, M.C. Quintero, A. Sola, A. Gamero, D.C. Schram, J.A.M. Van Der Mullen, The behavior of molecules in microwave-induced plasmas studied by optical emission spectroscopy. 2: Plasmas at reduced pressure, Spectrochim. Acta Part B At. Spectrosc. 54 (1999) 1085–1098. https://doi.org/10.1016/S0584-8547(99)00050-6.
    [72] Y.H. Kim, Y.J. Hong, K.Y. Baik, G.C. Kwon, J.J. Choi, G.S. Cho, H.S. Uhm, D.Y. Kim, E.H. Choi, Measurement of reactive hydroxyl radical species inside the biosolutions during non-thermal atmospheric pressure plasma jet bombardment onto the solution, Plasma Chem. Plasma Process. 34 (2014) 457–472. https://doi.org/10.1007/s11090-014-9538-0.
    [73] F. Rezaei, Y. Gorbanev, M. Chys, A. Nikiforov, S.W.H. Van Hulle, P. Cos, A. Bogaerts, N. De Geyter, Investigation of plasma-induced chemistry in organic solutions for enhanced electrospun PLA nanofibers, Plasma Process. Polym. 15 (2018) 1–18. https://doi.org/10.1002/ppap.201700226.
    [74] N. Bolouki, W.H. Kuan, Y.Y. Huang, J.H. Hsieh, Characterizations of a plasma-water system generated by repetitive microsecond pulsed discharge with air, nitrogen, oxygen, and argon gases species, Appl. Sci. 11 (2021). https://doi.org/10.3390/app11136158.
    [75] G. Mauer, How Hydrogen Admixture Changes Plasma Jet Characteristics in Spray Processes at Low Pressure, Plasma Chem. Plasma Process. 41 (2021) 109–132. https://doi.org/10.1007/s11090-020-10143-6.
    [76] S. Jaiswal, E.M. Aguirre, G.V. Prakash, A KHz frequency cold atmospheric pressure argon plasma jet for the emission of O(1S) auroral lines in ambient air, Sci. Rep. 11 (2021) 1–11. https://doi.org/10.1038/s41598-021-81488-x.
    [77] R. Ye, T. Ishigaki, H. Taguchi, S. Ito, A.B. Murphy, H. Lange, Characterization of the behavior of chemically reactive species in a nonequilibrium inductively coupled argon-hydrogen thermal plasma under pulse-modulated operation, J. Appl. Phys. 100 (2006). https://doi.org/10.1063/1.2364623.
    [78] A. Kohut, G. Galbács, Z. Márton, Z. Geretovszky, Characterization of a copper spark discharge plasma in argon atmosphere used for nanoparticle generation, Plasma Sources Sci. Technol. 26 (2017) 1–13. https://doi.org/10.1088/1361-6595/aa5c2b.
    [79] M. Momcilovic, M. Kuzmanovic, D. Rankovic, J. Ciganovic, M. Stoiljkovic, J. Savovic, M. Trtica, Optical emission studies of copper plasma induced using infrared transversely excited atmospheric (IR TEA) carbon dioxide laser pulses, Appl. Spectrosc. 69 (2015) 419–429. https://doi.org/10.1366/14-07584.
    [80] W. Kim, C. Bae, T. Michler, O. Toedter, T. Koch, Spatio-temporally resolved emission spectroscopy of inductive spark ignition in atmospheric air condition, Ignition Syst. Gasol. Engines 4th Int. Conf. (2018) 209–221.
    [81] D.A.L. Loch, Y.A. Gonzalvo, A.P. Ehiasarian, Nickel coatings by Inductively Coupled Impulse Sputtering (ICIS), Surf. Coatings Technol. 267 (2015) 98–104. https://doi.org/10.1016/j.surfcoat.2014.11.029.
    [82] E.K. Varbanova, V.M. Stefanova, Determination of silver in cosmetic products by microwave plasma - atomic emission spectrometry, Bulg. Chem. Commun. 51 (2019) 71–76.
    [83] M. Shariq, B. Friedrich, B. Budic, N. Hodnik, F. Ruiz-Zepeda, P. Majerič, R. Rudolf, Successful Synthesis of Gold Nanoparticles through Ultrasonic Spray Pyrolysis from a Gold(III) Nitrate Precursor and Their Interaction with a High Electron Beam, ChemistryOpen. 7 (2018) 533–542. https://doi.org/10.1002/open.201800101.

    QR CODE