簡易檢索 / 詳目顯示

研究生: 許智鈞
Chih-Chun Hsu
論文名稱: 應用於生物辨識系統之基於體內通訊的可調式手掌通道模型設計
An Adaptive Palm Model for Biometric Authentication System based on Intra-Body Communication
指導教授: 沈中安
Chung-An Shen
口試委員: 許維君
Wei-Chun Hsu
林淵翔
Yuan-Hsiang Lin
吳晉賢
Chin-Hsien Wu
沈中安
Chung-An Shen
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 72
中文關鍵詞: 人體內通訊通道建模生物辨識通道增益/衰減
外文關鍵詞: intra-body communcations, channel modeling, biometric, channel gain/attenuation
相關次數: 點閱:190下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於使用密碼的身份驗證系統的威脅越來越大,使得透過人體特徵進行認證的生物辨識系統變得越來越重要。然而主流的辨識系統所採用的特徵,如指紋、虹膜、耳型及臉部等,容易被他人間接取得,如透過照片或是使用過的物品等,故需要一種新的生物辨識方式以提升安全性。近年來,基於體內通訊(Intra-Body Communication ; IBC)通道的生物辨識系統被認為是可以改善現行的生物辨識系統中易於被取得特徵的缺陷。由於在身體區域網路中,手臂被廣泛的討論並應用於體內裝置間通訊的媒介,使得基於手臂的體內通訊通道已被分析得十分透徹,故手臂被選為第一個應用於基於體內通訊通道的生物辨識系統的部位。然而基於手臂體內通訊通道的生物辨識系統需要額外的人員協助辨識者連接至辨識系統,可用性十分的差。除此之外,亦難以將電極貼在相同的位置上,而不同的位置會造成系統無法識別使用者,使得使用者無法認證進而存取系統。為了改善系統的可用性以及電極的定位能力,基於手掌通道的生物辨識系統被提出。此系統使用固定間距的電極進行通道量測,故使用者僅需將手置於裝置上即可進行辨識,且手掌形狀十分適合將電極進行定位。然而,手掌的體內通訊通道從未被單獨討論過,使得無法針對其特性進行系統設計,進而造成此系統準確度極差,僅能作為其他生物辨識的輔助特徵,以避免誤判。有鑑於此,在設計一個易於使用、具有高度保密性、並高度準確的辨識系統方面,針對手掌的體內通訊通道進行更全面的完整分析是關鍵的第一步。通道建模是一種常見用來分析通道特性的方式,而通道特性則是基於體內通訊通道生物辨識系統的辨識特徵,若能分析出不同人的通道特徵差異,即可針對此部分進行系統設計,以提升系統準確度。但是,不同的結構會造成不同的通道特性,而手掌的的結構交雜著肌肉與骨頭十分的複雜,若使用固定間距的電極量測不同手掌會測得不同的通道特性,使得若要對手掌進行建模需要考量電極偏移的問題,而手掌的體內通訊通道亦從未被單獨建模過。在本論文中,我們提出了一個應用於基於體內通訊的生物辨識系統,針對手掌的體內通訊通道模型。我們提出的模型特色之一是可以套用不同的手掌大小並自動修正在相同的電極間距下,結構改變造成通道的不同。同時我們設計了一個模擬平台以利使用者進行不同參數的模擬,以及設計電極的間距,進而使得設計一易於使用且保密性高的生物辨識系統。我們亦透過與一個驗證過其生理結構準確性的電磁模型進行比較,以驗證我們模型的準確度。我們的實驗結果顯示,此兩者的模擬結果趨勢相近,故我們基於手掌的體內通訊通道模型十分的準確。


    Due to the increasing threats of authentication systems that use passwords, biometrics that are authenticated by users themselves have gradually gained importance. The mainstream biometric system is mainly conducted by the recognition of the fingerprints, irises, ear shapes, and faces of each person. However, these features are easy to be captured by others, so as to cheating the biometric system to obtain the access authority of the secured device. In recent years, there have been many studies using the intra-body communication (IBC) channel as a means of biometric authentication for enhancing the security. Specifically, as the arm-based IBC channel has been used in the body area network (BAN) for transmitting data between devices attached to the human body, it is a well-known channel of IBC that makes the arm lucrative to be the first part to be used in the IBC-based biometric authentication. Nevertheless, the arm-based IBC approach requires another person to help the user connect to the system, making it impractical to be realized. Moreover, it is not feasible to connect the electrode to arms at the same location every time which causes the system fail to identify users. To improve the usability of the IBC-based biometric authentication and the stability of the electrode, the palm-based IBC biometric system has been proposed by using two fixed electrode pair that user only needs to put their hand on. Nonetheless, the IBC channel of palm has never been thoroughly investigated, which heavily degrades the accuracy of the palm-based biometric authentication means and thus hinders the effectiveness and applicability. As a result, it is paramount to investigate the characteristic of palm-based IBC channel model such that a user-friendly and secured biometric authentication system can be built based upon. Since creating a channel model is a common method used to analyze the channel characteristic in wireless communication system, the IBC channel of palm can be investigated through channel modeling. However, there is no IBC channel model only modeling the palm of hand. It is necessary to create a IBC channel model based on palm. This paper proposes a parametric palm-based IBC channel model that can be adaptively calibrated with the differences of the IBC channel that is caused by the electrode offset and different palm sizes. Specifically, the proposed channel model emulates the palm-based IBC channel characteristics by only knowing the palm size and electrode configurations. Furthermore, a simulation platform is implemented that can simulate the IBC channel response of different palms under the same electrode setup. The proposed channel model is compared with the classical anatomically correct electromagnetic (EM) model. The experimental results show that the characteristics of the proposed model is very close to the EM model, verifying the accuracy of the proposed model.

    Recommendation Letter......................................... I ApprovalLetter................................................ II AbstractinChinese ............................................ III AbstractinEnglish ............................................ V Contents...................................................... VII ListofFigures................................................. IX ListofTables ................................................. XI 1 Introduction ............................................... 1 2 BackgroundandRelatedWork ................................... 5 3 ProposedPalmIBCChannelModel ................................ 11 3.1 The Composition of Palm and Equivalent Circuit Structure . 14 3.2 StructureDistributionofPalm .............................. 21 3.3 ModeltheIBCChannelofPalm ................................. 29 4 SimulationResult ........................................... 44 5 ConclusionandFutureWork .................................... 53 References.................................................... 54

    [1] A. Sharma, Ramesh Chandra Belwal, V. Ojha, and G. Agarwal, “Password based authentication: Philosophical survey,” in 2010 IEEE International Conference on Intelligent Computing and Intel- ligent Systems, vol. 3, 2010, pp. 619–622.
    [2] D. Shukla and V. V. Phoha, “Stealing passwords by observing hands movement,” IEEE Transactions on Information Forensics and Secur- ity, vol. 14, no. 12, pp. 3086–3101, 2019.
    [3] A. M. Eljetlawi and N. Ithnin, “Graphical password: Prototype usab- ility survey,” in 2008 International Conference on Advanced Com- puter Theory and Engineering, 2008, Conference Proceedings. doi: 10.1109/ICACTE.2008.34. ISBN 2154-7505 pp. 351–355.
    [4] S. W. Shah and S. S. Kanhere, “Recent trends in user authentication –a survey,” IEEE Access, vol. 7, pp. 112 505–112 519, 2019. doi: 10.1109/ACCESS.2019.2932400
    [5] M. Bača, P. Grd, and T. Fotak, Basic Principles and Trends in Hand Geometry and Hand Shape Biometrics. InTech, 2012, pp. 77–99. ISBN 978-953-51-0859-7
    [6] Z. Rui and Z. Yan, “A survey on biometric authentication: Toward secure and privacy-preserving identification,” IEEE Access, vol. 7, pp. 5994–6009, 2019. doi: 10.1109/ACCESS.2018.2889996
    [7] A. E. Khorshid, I. N. Alquaydheb, F. Kurdahi, R. P. Jover, and A. Eltawil, ”Biometric identity based on intra-body communication channel characteristics and machine learning,” Sensors, vol. 20, no. 5, p. 1421, Mar 2020. doi: 10.3390/s20051421. [Online]. Available: http://dx.doi.org/10.3390/s20051421
    [8] T. G. Zimmerman, “Personal area networks: Near-field intrabody communication,” IBM Systems Journal, vol. 35, no. 3.4, pp. 609–617, 1996. doi: 10.1147/sj.353.0609
    [9] I. Nakanishi, Y. Yorikane, Y. Itoh, and Y. Fukui, “Biometric iden- tity verification using intra-body propagation signal,” in 2007 Biomet- rics Symposium, 2007, Conference Proceedings. doi: 10.1109/BCC. 2007.4430545. ISBN null pp. 1–6.
    [10] A. E. Justice, T. Karaderi, H. M. Highland et al., “Protein- coding variants implicate novel genes related to lipid homeostasis contributing to body-fat distribution,” Nature Genetics, vol. 51, no. 3, pp. 452–469, 2019. doi: 10.1038/s41588-018-0334-2. [Online]. Available: https://doi.org/10.1038/s41588-018-0334-2
    [11] M. Xia, J. Ma, J. Li et al., “Gradient and svm based biometric identification using human body communication,” in 2016 IEEE In- ternational Conference of Online Analysis and Computing Science (ICOACS), 2016, Conference Proceedings. doi: 10.1109/ICOACS. 2016.7563049 pp. 61–65.
    [12] I. Nakanishi, T. Inada, and S. Li, “New dedicated measuring devices for intra-palm propagation signals,” in 2014 International Symposium on Biometrics and Security Technologies (ISBAST), 2014, Confer- ence Proceedings. doi: 10.1109/ISBAST.2014.7013090. ISBN null pp. 35–38.
    [13] A. E. F. Khorshid, “Intrabody communications for body area net- works,” Doctoral dissertation, University of California, Irvine, 2019.
    [14] Z. Nie, Y. Liu, C. Duan et al., “Wearable biometric authentication based on human body communication,” in 2015 IEEE 12th Interna- tional Conference on Wearable and Implantable Body Sensor Net- works (BSN), 2015, Conference Proceedings. doi: 10.1109/BSN. 2015.7299362. ISBN 2376-8894 pp. 1–5.
    [15] A. K. Jain, R. Bolle, and S. Pankanti, Biometrics: personal identific- ation in networked society. Springer Science and Business Media, 2006, vol. 479. ISBN 0306470446
    [16] M. Drahanský, Ed., Hand-Based Biometrics: Methods and Tech- nology, ser. Security. Institution of Engineering and Tech- nology, 2018. ISBN 978-1-78561-224-4. [Online]. Available: https://digital-library.theiet.org/content/books/sc/pbse008e
    [17] R.Sanchez-Reillo,C.Sanchez-Avila,andA.Gonzalez-Marcos,“Bio- metric identification through hand geometry measurements,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 22, no. 10, pp. 1168–1171, 2000. doi: 10.1109/34.879796
    [18] M. Adán, A. Adán, A. S. Vázquez, and R. Torres, “Biometric verification/identification based on hands natural layout,” Image and Vision Computing, vol. 26, no. 4, pp. 451–465, 2008. doi: 10.1016/ j.imavis. 2007.08.010. [Online]. Available: http: //www.sciencedirect.com/science/article/pii/S0262885607001345
    [19] I. Nakanishi, T. Inada, Y. Sodani, and S. Li, “Performance evalu- ation of intra-palm propagation signals as biometrics,” in 2013 Inter- national Conference on Biometrics and Kansei Engineering, 2013, Conference Proceedings. doi: 10.1109/ICBAKE.2013.17 pp. 91–94.
    [20] M. Oberle, “Low power systems-on-chip for biomedical applica- tions,” Thesis, ETH Zurich, 2002.
    [21] K. Hachisuka, Y. Terauchi, Y. Kishi et al., “Simplified circuit mod- eling and fabrication of intrabody communication devices,” Sensors and Actuators A: Physical, vol. 130-131, pp. 322–330, 2006. doi: 10.1016/j.sna.2006.04.044
    [22] M. S. Wegmueller, M. Oberle, N. Felber, N. Kuster, and W. Fichtner, “Signal transmission by galvanic coupling through the human body,” IEEE Transactions on Instrumentation and Measurement, vol. 59, no. 4, pp. 963–969, 2010. doi: 10.1109/TIM.2009.2031449
    [23] Y. Song, Q. Hao, K. Zhang et al., “The simulation method of the gal- vanic coupling intrabody communication with different signal trans- mission paths,” IEEE Transactions on Instrumentation and Measurement, vol. 60, no. 4, pp. 1257–1266, 2011. doi: 10.1109/TIM. 2010.2087870
    [24] W. J. Tomlinson, S. Banou, C. Yu, M. Nogueira, and K. R. Chow- dhury, “Secure on-skin biometric signal transmission using galvanic coupling,” in IEEE INFOCOM 2019 - IEEE Conference on Computer Communications, 2019, pp. 1135–1143.
    [25] G. Baksa, P. Mandl, S. Benis et al., Gross Anatomy of the Human Hand. Cham: Springer International Publishing, 2018, pp. 15–41. ISBN 978-3-319-74207-6. [Online]. Available: https: //doi.org/10.1007/978-3-319-74207-6\_2
    [26] V. Edwards, Electron Theory. ETP, 2018. ISBN 9781788820400
    [27] R. C. Dorf and J. A. Svoboda, Introduction to electric circuits.
    Hoboken, NJ: John Wiley, 2014. ISBN 9781118477502 1118477502
    [28] G. Lazar and F. P. Schulter-Ellis, “Intramedullary structure of human metacarpals,” The Journal of Hand Surgery, vol. 5, no. 5, pp. 477–481, 1980. doi: 10.1016/S0363-5023(80)80079-7. [Online]. Available: http://www.sciencedirect.com/science/article/ pii/S0363502380800797
    [29] S. uysal ramadan, I. Tuncbilek, Z. Ozeri et al., “The relationship of grip strength with interosseous muscles/intermetacarpal fat pads of the hand: An ultrasonographic study,” Trakya Universitesi Tip Fak- ultesi Dergisi - TRAK UNIV TIP FAK DERG, vol. 28, 2009. doi: 10.5174/tutfd.2009.02813.2
    [30] K. Kanaya, T. Wada, S. Isogai, G. Murakami, and S. Ishii, “Vari- ation in insertion of the abductor digiti minimi: An anatomic study,” The Journal of Hand Surgery, vol. 27, no. 2, pp. 325–328, 2002. doi: 10.1053/jhsu.2002.31155
    [31] Chung-Wen Ho, A. Ruehli, and P. Brennan, “The modified nodal ap- proach to network analysis,” IEEE Transactions on Circuits and Sys- tems, vol. 22, no. 6, pp. 504–509, 1975.
    [32] D.Andreuccetti, R.Fossi, and C.Petrucci, “An internet resource for the calculation of the dielectric properties of body tissues in the frequency range 10 hz - 100 ghz,” 1997. [Online]. Available: http://niremf.ifac.cnr.it/tissprop/
    [33] P.Oltulu,B.Ince,N.Kökbudak,andS.Fındık,“Measurementofepi- dermis, dermis, and total skin thicknesses from six different body re- gions with a new ethical histometric technique,” Turk Plastik, Rekon- struktif ve Estetik Cerrahi Dergisi, vol. 26, pp. 56–61, 2018. doi: 10.4103/tjps.tjps_2_17
    [34] P. Störchle, W. Müller, M. Sengeis et al., “Measurement of mean subcutaneous fat thickness: eight standardised ultrasound sites compared to 216 randomly selected sites,” Scientific Reports, vol. 8, no. 1, p. 16268, 2018. doi: 10.1038/s41598-018-34213-0. [Online]. Available: https://doi.org/10.1038/s41598-018-34213-0
    [35] A. Morimoto, T. Suga, N. Tottori et al., “Association between hand muscle thickness and whole-body skeletal muscle mass in healthy adults: a pilot study,” Journal of Physical Therapy Science, vol. 29, no. 9, pp. 1644–1648, 2017. doi: 10.1589/jpts.29.1644
    [36] E. Çakıt, B. Durgun, M. Cetik, and O. Yoldas, “A survey of hand an- thropometry and biomechanical measurements of dentistry students in turkey,” Human Factors and Ergonomics in Manufacturing and Service Industries, vol. 24, pp. 739–753, 2014. doi: 10.1002/hfm. 20401
    [37] S. N. Makarov, G. M. Noetscher, J. Yanamadala et al., “Virtual hu- man models for electromagnetic studies and their applications,” IEEE Reviews in Biomedical Engineering, vol. 10, pp. 95–121, 2017. doi: 10.1109/RBME.2017.2722420

    無法下載圖示 全文公開日期 2025/08/24 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE