簡易檢索 / 詳目顯示

研究生: 吳奕達
YI-DA
論文名稱: 用於穿戴式生物辨識與醫療應用的超低功耗表面肌電訊號量測系統之設計
Design of An Ultra-low Power Surface EMG Signal Measurement System for Wearable Biometric and Medical Applications
指導教授: 阮聖彰
Shanq-Jang Ruan
口試委員: 阮聖彰
Shanq-Jang Ruan
林淵翔
Yuan-Hsiang Lin
林昌鴻
Chang Hong Lin
陳維美
Wei-Mei Chen
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2021
畢業學年度: 110
語文別: 英文
論文頁數: 74
中文關鍵詞: 表面肌電訊號流量控制無線傳輸乒乓緩衝器系統功率消耗評估
外文關鍵詞: surface ElectroMyoGraphy, flow control, wireless transmission, ping-pong buffer, system power evaluation
相關次數: 點閱:333下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,表面肌電訊號 (surface EMG) 受到了許多關注,無論是學術文章或是國際期刊,都對表面肌電訊號投入了大量的研究。EMG訊號用於分析肌肉的活動或者評估患者的肌肉狀態,現行市面上用於商業用途的表面肌電系統,不僅價格昂貴,且消耗功率極高,而本篇論文主要在於實現支援高取樣率和超低功耗的表面肌電訊號感測系統,透過分析和優化肌電訊號之感測電路的各個環節,且同時結合了擁有BLE的MCU,以優化現行市面上系統呈現上的不足。此外,本系統使用了兩種不同的CPU時脈頻率,並且結合了乒乓緩衝器作為記憶體架構,實驗結果顯示,與商用的表面肌電系統相比,本文所提出的表面肌電系統架構之平均電流可以降低高達92.72%,且電池壽命提高了9.057倍之多,且在相關係數上高達99.5%,這代表了商用的表面肌電系統和我們所提出的系統之間有著高度的一致和相關性,由此可見,未來若將本文所提之表面肌電訊號感測系統用於市面上,將有其不可取代的競爭力。


    In recent years, the surface electromyography (surface EMG) signal has received a lot of attention. EMG signals are used to analyze muscle activity or to evaluate a patient's muscle status. The commercial surface EMG systems are expensive and have high power consumption. This thesis is to implement a surface EMG acquisition system supporting high sampling and ultra-low power consumption measurement. This work analyzes and optimizes each part of the EMG acquisition circuit and combines an MCU with BLE. The system used two different frequency CPU clock sources and proposed a ping-pong buffer as the memory architecture. The results show that all the average current of the proposed architecture can be reduced by 92.72% compared with the commercial devices, the battery life is 9.057 times. In addition, the correlation coefficients are up to 99.5%, which represent a high relative agreement between the commercial and the proposed system.

    Recommendation Form I Committee Form II Chinese Abstract III English Abstract IV Acknowledgements V Table of Contents VII List of Tables X List of Figures XI Chapter 1 Introduction 1 1.1. Overview of surface EMG application 1 1.2. Feature of This Thesis 3 1.3. Organization 4 Chapter 2 Backgrounds 5 Chapter 3 Related work 7 3.1. Instrumentation amplifier 8 3.2. Processing surface EMG noise of filter 9 3.2.1. Active filter 9 3.2.2. Notch filter 12 3.3. Storage method of wireless embedded system 14 3.3.1. The use of wireless transmission technology 14 3.3.2. Improvement of data processing efficiency based on ping-pong buffer 18 3.4. Comparison of voltage regulators 19 Chapter 4 Implementation method 23 4.1. Measurement module design 24 4.1.1. Instrumentation amplifier with passive high-pass filter 24 4.1.2. Design MFB low pass filter 26 4.1.3. Ultra-low quiescent current LDO of low noise 29 4.1.4. Central Control Unit 30 4.1.4.1. Saving-power mechanism 30 4.1.4.2. Ping-pong buffer mechanism stores surface EMG data 32 4.2. The host processing with IIR 33 4.3. The host interface and processing 35 Chapter 5 Experimental Results 38 5.1. SNR 40 5.2. Linear correlation coefficient 41 5.3. Power consumption 43 5.4. Advantage 46 Chapter 6 Conclusion 48 Reference 50

    [1] Y. Liu and H. Huang, “Towards a high-stability EMG recognition system for prosthesis control: A one-class classification based non-target EMG pattern filtering scheme," 2009 IEEE International Conference on Systems, Man and Cybernetics, 2009, pp. 4752-4757, doi: 10.1109/ICSMC.2009.5346086.
    [2] P. Huang, H. Wang, Y. Wang, Z. Liu, OW. Samuel, M. Yu, X. Li, S. Chen, and G. Li, " Identification of Upper-Limb Movements Based on Muscle Shape Change Signals for Human-Robot Interaction," Computational and Mathematical Methods in Medicine, 2020, pp. 1-14, doi: 10.1155/2020/5694265.
    [3] Y. Su, M. H. Fisher, A. Wolczowski, G. D. Bell, D. Burn, and R. Gao, "Towards an EMG Controlled Prosthetic Hand Using a 3D Electromagnetic Positioning System," 2005 IEEE Instrumentationand Measurement Technology Conference Proceedings, 2005, pp. 261-266, doi: 10.1109/IMTC.2005.1604113.
    [4] D. Brunelli, A. M. Tadesse, B. Vodermayer, M. Nowak, and C. Castellini, "Low-cost wearable multichannel surface EMG acquisition for prosthetic hand control," 2015 6th International Workshop on Advances in Sensors and Interfaces (IWASI), 2015, pp. 94-99, doi: 10.1109/IWASI.2015.7184964.
    [5] K. Gilmore and J. Meyers. "Using surface electromyography in physiotherapy research," Australian Journal of Physiotherapy, 1983, vol. 29, no. 1, pp. 3-9.
    [6] MR. Al-Mulla, F. Sepulveda, and M. Colley, "A review of non-invasive techniques to detect and predict localised muscle fatigue," Sensors, 2011, vol. 11, no. 4, pp. 3545-3594, doi: 10.3390/s110403545.
    [7] "Trignotm Wireless Biofeedback system User’S Guide" Delsys Incorporated USA, Apr. 2018, [online] Available: https://www.delsys.com/downloads/USERSGUIDE/trigno/wireless-biofeedback-system.pdf.
    [8] "Mini Wave Infinity" Cometa Systems, Inc., 2004, [online] Available: http://www.h-elmar-ms.pl/helmar-ms/plik/cometa-systems_wavetrack-inertial-system_nn4776.pdf.
    [9] "Ultium EMG brochure" Noraxon USA, January. 2019, [online] Available: https://www.noraxo-n.com/noraxon-download/ultium-emg-datasheet/
    [10] "Shimmer User Manual Revision 3p" Shimmer Research, 2017, [online] Available: http://www.sh-immersensing.com/images/uploads/docs/Shimmer_User_Manual_rev3p.pdf.
    [11] G. Biagetti, P. Crippa, L. Falaschetti, S. Orcioni, and C. Turchetti, "Human activity monitoring system based on wearable sEMG and accelerometer wireless sensor nodes," Biomedical engineering online, 2018, vol. 17, no. 1, pp. 132, doi: 10.1186/s12938-018-0567-4.
    [12] A. Bhandarkar, "Design Considerations for a Robust EMG Amplifier," International Journal of Science and Research (IJSR), 2016, pp. 1933-1937.
    [13] T.-Y. Ho, Y.-J. Chen, W.-C. Hung, K.-W. Ho, and M.-S. Chen, "The Design of EMG Measurement System for Arm Strength Training Machine," Mathematical Problems in Engineering, 2015, pp. 1-10, doi: 10.1155/2015/356028.
    [14] G. Gargiulo, R. Calvo, and C. Jin. "Giga-ohm high-impedance FET input amplifiers for dry electrode biosensor circuits and systems," Integrated Microsystems: Electronics, Photonics, and Biotechnology, 2017, pp. 165-194.
    [15] W. M. Laghari, M. U. Baloch, M. A. Mengal, and S. J. Shah, "Performance analysis of analog butterworth low pass filter as compared to Chebyshev type-I filter, Chebyshev type-II filter and elliptical filter," Circuits and Systems, 2014, vol. 5, no. 9, pp. 209-216, doi: 10.4236/cs.2014.59023.
    [16] A. A. Kabanov and G. V. Nikonova, "Development of Analog Filtering Circuit for Electromyography Signals," 2019 Ural Symposium on Biomedical Engineering, Radioelectronics and Information Technology (USBEREIT), 2019, pp. 55-58, doi: 10.1109/USBEREIT.2019.8736559.
    [17] I. Elamvazuthi, Z. Zulkifli, Z. Ali, M. K. A. A. Khan, S. Parasuraman, M. Balaji, and M. Chandrasekaran, "Development of Electromyography Signal Signature for Forearm Muscle," Procedia Computer Science, 2015, vol. 76, pp. 229-234, doi: 10.1016/j.procs.2015.12.347.
    [18] J. Wang, L. Tang, and J. E. Bronlund, "Surface EMG signal amplification and filtering," International Journal of Computer Applications (IJCA), 2013, vol. 82, no. 1.
    [19] L. Rozaqi, A. Nugroho, K. H. Sanjaya and A. Ivonita Simbolon, "Design of Analog and Digital Filter of Electromyography," 2019 International Conference on Sustainable Energy Engineering and Application (ICSEEA), 2019, pp. 186-192, doi: 10.1109/ICSEEA47812.2019.8938645.
    [20] H. I. Çakar, S. Kara, and O. Toker,"Design of a Portable Electromyography Device for Back Herniated Patients," Biodevices 2010–3rd International Conference on Biomedical Electronics and Devices, January 2010.
    [21] S. A. Go, K. Coleman-Wood, and K. R. Kaufman, "Frequency analysis of lower extremity electromyography signals for the quantitative diagnosis of dystonia," Journal of electromyography and kinesiology, 2014, vol. 24, no.1, pp. 31-36.
    [22] A. Van Boxtel, "Optimal signal bandwidth for the recording of surface EMG activity of facial, jaw, oral, and neck muscles," Psychophysiology, 2001, vol. 38, no. 1, pp. 22-34, doi:10.1111/1469-8986.3810022.
    [23] M. B. I. Reaz, M. S. Hussain, and F. Mohd-Yasin, "Techniques of EMG signal analysis: detection, processing, classification and applications," Biological procedures online, vol. 8, pp. 11-35, 2006.
    [24] X. Li, W. Z. Rymer, G. Li, and P. Zhou, "The effects of notch filtering on electrically evoked myoelectric signals and associated motor unit index estimates," Journal of NeuroEngineering and rehabilitation, 2011, vol. 8, no. 64, doi: 10.1186/1743-0003-8-64.
    [25] M. Ladrova, R. Martinek, J. Nedoma, and M. Fajkus, "Methods of Power Line Interference Elimination in EMG Signal," Journal of Biomimetics, Biomaterials and Biomedical Engineering, 2019, vol. 40, pp. 64–70, doi: 10.4028/www.scientific.net/jbbbe.40.64.
    [26] K. Kamata, A. J. Aho, S. Hagihira, A. Yli-Hankala, V. Jäntti, "Frequency band of EMG in anaesthesia monitoring," BJA: British Journal of Anaesthesia, 2011, vol. 107, no. 5, pp. 822–823, doi: 10.1093/bja/aer311.
    [27] H. Tankisi, D. Burke, L. Cui, M. de Carvalho, S. Kuwabara, SD. Nandedkar, S. Rutkove, E. Stålberg, M.J.A.M. van Putten, and A. Fuglsang-Frederiksen,"Standards of instrumentation of EMG," Clinical Neurophysiology, 2020, vol. 131, no. 1, pp. 243-258, doi: 10.1016/j.clinph.2019.07.025.
    [28] S. D. H. Soedirdjo, K. Ullah and R. Merletti, "Power line interference attenuation in multi-channel sEMG signals: Algorithms and analysis," 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2015, pp. 3823-3826, doi: 10.1109/EMBC.2015.7319227.
    [29] Esp8266ex Datasheet. Accessed: Apr. 27, 2020. [Online]. Available: https://www.espressif.com/sites/default/files/documentation/0a-esp8266ex_datasheet_en.pdf.
    [30] nRF52832 Datasheet. Accessed: Oct. 10, 2017. [Online]. Available: https://infocenter.nordicsemi.com/pdf/nRF52832_PS_v1.4.pdf.
    [31] J. N. Dieffenderfer and R. N. Kalla, "Ping-pong data buffer for transferring data from one data bus to another data bus, " U.S. Patent, Jun. 1993.
    [32] Y. -M. Joo and N. McKeown, "Doubling memory bandwidth for network buffers, "Proceedings. IEEE INFOCOM '98, the Conference on Computer Communications. Seventeenth Annual Joint Conference of the IEEE Computer and Communications Societies. Gateway to the 21st Century (INFOCOM), 1998, vol. 2, no. 98, pp. 808-815, doi: 10.1109/INFCOM.1998.665104.
    [33] C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao, and J. Cong, "Optimizing FPGA-based Accelerator Design for Deep Convolutional Neural Networks," Proceedings of the 2015 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, 2015, pp. 161-170, doi: 10.1145/2684746.2689060.
    [34] M. Mustafin, O. Turar, and D. Akhmed-Zaki, "Testing of Vulkan Visualization for Geo-Models on Mobile Devices and Desktop Systems with Ray Tracing GPUs," European Association of Geoscientists & Engineers ECMOR XVII, 2020, vol. 2020, no. 1, pp. 1–11, doi: 10.3997/2214-4609.202035172.
    [35] S. Joshi, A. Wakankar and N. Khambete, "Design and implementation of low power compact amplifier circuitry for wearable biosignal device," 2016 International Conference on Computing Communication Control and automation (ICCUBEA), 2016, pp. 1-6, doi: 10.1109/ICCUBEA.2016.7860095.
    [36] INA333 Datasheet. Accessed: Dec. 30, 2015. [Online]. Available: https://www.ti.com/lit/gpn/INA333.
    [37] AD620 Datasheet. Accessed: Aug. 26, 2011. [Online]. Available: https://datasheet.octopart.com/AD620ANZ-Analog-Devices-datasheet-9660204.pdf.
    [38] A. Salman, J. Iqbal, U. Izhar, U. S. Khan and N. Rashid, "Optimized circuit for EMG signal processing," 2012 International Conference of Robotics and Artificial Intelligence, 2012, pp. 208-213, doi: 10.1109/ICRAI.2012.6413390.
    [39] G. Yang, Z. Sun, Z. Wang and G. Sun, "Detection and Identification the Human Surface Electromyogra Signal," IOP Conference Series: Earth and Environmental Science, 2020, Vol. 440, no. 2, pp. 022016, doi: 10.1088/1755-1315/440/2/022016.
    [40] INA128 Datasheet. Accessed: Apr. 8, 2019. [Online]. Available: https://www.ti.com/lit/gpn/ina128.
    [41] AD8236 Datasheet. Accessed: May. 9, 2009. [Online]. Available: https://www.analog.com/media/en/technical-documentation/data-sheets/AD8236.pdf.
    [42] 3-lead Muscle / Electromyography Sensor for Microcontroller Applications Datasheet. Accessed: May. 22, 2015. [Online]. Available: https://cdn.sparkfun.com/datasheets/Sensors/Biometric/MyowareU-serManualAT-04-001.pdf.
    [43] T. Roland, K. Wimberger, S. Amsuess, MF. Russold, and W. Baumgartner, "An Insulated Flexible Sensor for Stable Electromyography Detection: Applicationto Prosthesis Control," Sensors (Basel), 2019, vol. 19, no. 4, pp. 961, doi:10.3390/s19040961.
    [44] Importance of Input Bias Current Return Paths in Instrumentation Amplifier Applications. 2021 Available online: https://www.ti.com/lit/pdf/sboa503.
    [45] Designing Amplifier Circuits: How to Avoid Common Problems. 2007 Available online: https://www.analog.com/media/en/technical-documentation/application-notes/AN-937.pdf.
    [46] Tabassum, F., Islam, M. I. and Amin, M. R. Comparison of FIR and IIR Filter Bank in Reconstruction of Speech Signal, In-ternational Journal of Computer Science and Information Security, 2016, vol. 14, no. 9, pp. 864.
    [47] Introduction to Filters: FIR versus IIR. 2020 Available online: https://community.sw.siemens.com/s/artic-le/introduction-to-filters-fir-versus-iir.
    [48] "How to improve EMG signal quality," Delsys Inc., USA, 2019. Accessed: Feb. 10, 2020. [Online]. Available: https://www.delsys.com/emgworks/signal-quality-monitor/improve/.
    [49] S. Heywood, Y. Pua, J. McClelland, P. Geigle, A. Rahmann, K.J. Bower, and R. Clark, "Low-cost electromyography— Validation against a commercial system using both manual and automated activation timing thresholds," J. Electromyography Kinesiology, vol. 42, pp. 74–80, 2018.
    [50] Jani A. B., Bagree R. and Roy A. K., Design of a low-power, low-cost ECG & EMG sensor for wearable biometric and medical application, IEEE SENSORS, 2017, pp. 1-3.
    [51] Seguna, C., Buhagiar, S., Scerri, J. and Scicluna, K. Development of a New EMG Wearable Sensor for Myoelectric Control, In BIODEVICES, 2020, pp. 160-164.
    [52] P. -C. Chen, S. -J. Ruan and Y. -W. Tu, "Power-Management Strategies in sEMG Wireless Body Sensor Networks Based on Computation Allocations: A Case Study for Fatigue Assessments," in IEEE Access, vol. 8, pp. 181366-181374, 2020, doi: 10.1109/ACCESS.2020.3028706.
    [53] T. Oo and P. Phukpattaranont, "Signal-to-Noise Ratio Estimation in Electromyography Signals Contaminated with Electrocardiography Signals. Fluctuation and Noise Letters," in Fluctuation and Noise Letters, 2020, vol. 10, no. 3, doi:10.1142/s0219477520500273.
    [54] R. Zhou, Q. Luo, X. Feng, and C. Li, "Design of a wireless multi-channel surface EMG signal acquisition system," in 2017 3rd IEEE International Conference on Computer and Communications (ICCC), 2017, pp. 279-283, doi:10.1109/compcomm.2017.8322556
    [55] Y. -H. Yang, S. -J. Ruan, P. -C. Chen, Y. -T. Liu and Y. -H. Hsueh, "A Low-Cost Wireless Multichannel Surface EMG Acquisition System," in IEEE Consumer Electronics Magazine, vol. 9, no. 5, pp. 14-19, 1 Sept. 2020, doi: 10.1109/MCE.2020.2986792.

    無法下載圖示 全文公開日期 2026/10/05 (校內網路)
    全文公開日期 2026/10/05 (校外網路)
    全文公開日期 2026/10/05 (國家圖書館:臺灣博碩士論文系統)
    QR CODE