簡易檢索 / 詳目顯示

研究生: 丁奕豪
Yi-Hao - Ting
論文名稱: 空拍機應用於道路交通事故處理
RTADS: A System for Effective and Efficient Sketching Road Traffic Accidents Diagram Using Drone
指導教授: 戴文凱
Wen-Kai Tai
口試委員: 朱宏國
Hung-Kuo Chu
賴祐吉
Yu-Chi Lai
姚智原
Chih-Yuan Yao
學位類別: 碩士
Master
系所名稱: 電資學院 - 資訊工程系
Department of Computer Science and Information Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 114
中文關鍵詞: 道路交通事故處理系統道路交通事故現場圖空拍作業SOP無人機
外文關鍵詞: RTADS, Aerial shooting SOP, UAV(Unmanned Aerial Vehicle), Drone, Accident reconstruction graphic, Traffic accident investigation
相關次數: 點閱:445下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 交通事故頻繁!警察單位在道路交通事故處理的過程中,最重要的工作在記錄現場,包含現場攝影、現場繪圖、跡證採集等。因此,如何提升事故現場處理的品質與效率相當重要!
    隨著無人機的普及化與技術成熟,本論文利用無人機的採證便利性與機動性應用於道路交通事故處理上。我們提出一套完整的道路交通事故處理系統:包含行動裝置端、服務端與客戶端。行動裝置端包含「操控空拍機與拍照之軟體系統」和「繪製現場圖之軟體系統」,服務端有伺服器儲存事故現場資料與後製軟體和客戶端包含編輯、後製軟體與列印裝置。並且提出一套空拍作業SOP,以有效地處理道路交通事故。空拍作業SOP包含:準備、跟隨、俯拍、環拍、繞拍、點拍、返航、繪圖與資料回傳伺服器。。透過無人機的跟隨,能協助警員勘查現場;無人機得到的俯拍圖作為事故現場圖的基底,我們自動化測量物件間的距離,並完整的標示事故現場的資訊,解決傳統繪圖不清晰、不精準的問題;透過環拍、繞拍、點拍可做完整的事故現場攝影與跡證採集。最後能將資料回傳伺服器做資料保全與後製。
    實驗包含了自動測光驗證、跟隨ROI驗證、點拍精準度、自動返航精準度、事故現場圖測距精準度,結果驗證了空拍作業SOP的可行性與資料完整性。且提出的空拍繪製現場圖相較於傳統繪圖方法節省了66%的作業時間和降低測距誤差至5.43公分。
    本論文所提的空拍作業SOP能符合現今的「交通事故現場處理規範」與提升資料品質與警員處理的效率。達到此研究的三個目的:「完整的採集事故現場資料」、「準確的繪製事故現場」與「有效的縮短事故現場處理時間」。


    Traffic accidents happen frequently!In the process of dealing with traffic accidents, the most important work of the police department is examining and recording the scene, which includes photography, drafting, track collection, etc. Therefore, finding a way to enhance the quality and efficiency of the traffic accident investigation is quite important.
    With the rising popularity and technological advances in UAVs (Unmanned Air Vehicles), this study applies the flexibility and convenience of UAVs to handle traffic accident scene investigation. We propose a complete traffic accident management system, which includes a mobile device side, server, and client. The mobile device side includes: a system that can control and taking pictures with the UAV, and a drawing system that lets the user draw and input details of the actual traffic scene image. The server-side includes: a server which stores information of the traffic accident and photo editing. The client-side provides editing, photo editing, and a printer. Thus these three combined together provide a complete aerial photo shooting SOP (Standard Operating Procedure), as to effectively manage and handle traffic scene investigation. The SOP of the aerial shooting system is in the following order: prepare, follow user, overhead shooting, panorama shooting, orbit shooting, anchor shooting, returning home, drawing the accident scene, and backing up information to the server. With UAVs following the police officers, UAVs may assist them in investigating the scene. The overhead view from UAV will be used as the main base of the traffic accident scene. We automatically measure the distance between objects, and indicate the site information completely to solve the unclear and inaccurate problems of traditional drawing. Panorama shooting, orbit shooting, and anchor shooting are to provide a way of photographing the complete accident scene and collecting evidence. Finally, the information retrieved from the preceding steps is sent to the server for date preservation and further editing.
    The experiment includes auto exposure checking, following ROI checking, anchor shooting precision, UAV home returning precision, and the precision of using the overhead traffic accident image to record the real-time distance. The results show and examine the feasibility and information integrity of the Aerial shooting SOP. The use of the UAV overhead shooting within our SOP reduces 66% of the operation time and decreases the error in distance measurement up to 5.43 centimeters, when compared to traditional drawing of traffic accident scenes currently applied today. The SOP this study showcases both follows the “Traffic Accident Scene Handling Regulations” and increases the quality and efficiency of police officers handling traffic accident scenes. The three objectives of this study have been obtained: “Integrity in collecting traffic accident scene information”, “Accurate drawing of the traffic accident scene”, and “Efficiently decreasing the time of handling traffic accident scenes”.

    摘要 I Abstract II 致謝 IV 目錄 V 圖索引 VIII 表索引 XIII 圖表索引 XIV 第一章 緒論 1 1.1 研究動機 1 1.2 研究目的 2 1.3 預計研究貢獻 3 1.4 本論文之章節結構 3 第二章 相關研究 4 2.1 無人機相關應用 4 2.1.1 綠野仙蹤研究(A Wizard of Oz Style Study) 4 2.1.2 人機互動(Human Drone Interactive, HDI) 5 2.1.3 無人機無線網路架構(Wireless Drone Network) 6 2.1.4 植物生態學應用 6 2.1.5 水質分析應用 7 2.1.6 道路交通事故應用 8 2.2 道路交通事故重建之繪圖工具 10 2.3 現今交通事故處理法規與流程 14 第三章 系統架構 17 3.1 系統架構 17 3.2 系統應用情境 17 3.3 UML模型 18 3.4 空拍作業SOP 20 第四章 方法 22 4.1 操控空拍機與拍照之軟體系統 22 4.1.1 功能架構 22 4.1.2 功能介紹 23 4.1 繪製現場圖之軟體系統 42 4.2.1 功能架構 42 4.2.2 繪圖軟體介紹 54 4.2.3 操作流程 58 第五章 系統與實驗結果 64 5.1 開發環境 64 5.2 硬體設備 64 5.2.1 Drone設備 64 5.2.2 RC端平板電腦設備 66 5.2.3 遠端手機設備 67 5.3 實驗結果 68 5.3.1 自動測光驗證 68 5.3.2 跟隨ROI驗證 69 5.3.3 點拍精準度 71 5.3.4 自動返航精準度 74 5.3.5 資料回傳伺服器時間統計 75 5.3.6 現場圖測距精準度 75 5.3.7 空拍繪製現場圖與傳統繪圖比較 78 5.3.8 驗證空拍作業SOP 80 5.3.9 統計空拍作業SOP時間 90 第六章 結論與未來的研究方向 91 6.1 結論 91 6.2 未來研究方向 91 參考文獻 93

    [1] Nabu and Takiyu, "台灣車禍事故頻繁 平均每天4.5人喪命," 2016.
    [2] 內政部警政署, “交通事故專區,” 內政部警政署, 2016. [線上]. Available: https://www.npa.gov.tw/NPAGip/wSite/np?ctNode=12855&mp=1. [存取日期: 1 11 2016].
    [3] 內政部警政署, “道路交通事故處理規範,” 5 3 2013. [線上]. Available: http://www.rootlaw.com.tw/LawArticle.aspx?LawID=A040040111030900-1040305.
    [4] P. Katsigiannis, L. Misopolinos, V. Liakopoulos, T. K. Alexandridis and G. Zalidis, "An autonomous multi-sensor UAV system for reduced-input precision agriculture applications," in 2016 24th Mediterranean Conference on Control and Automation (MED), Athens, 2016.
    [5] D. Long, C. McCarthy and T. Jensen, "Row and water front detection from UAV thermal-infrared imagery for furrow irrigation monitoring," in 2016 IEEE International Conference on Advanced Intelligent Mechatronics (AIM), Banff, AB, 2016.
    [6] J. Navia, I. Mondragon, D. Patino and J. Colorado, "Multispectral mapping in agriculture: Terrain mosaic using an autonomous quadcopter UAV," in 2016 International Conference on Unmanned Aircraft Systems (ICUAS), Arlington, VA, 2016.
    [7] P. Tokekar, J. V. Hook, D. Mulla and V. Isler, "Sensor Planning for a Symbiotic UAV and UGV System for Precision Agriculture," IEEE Transactions on Robotics, pp. 1498-1511, 12 2016.
    [8] M. Pásler, J. Komárková and P. Sedlák, "Comparison of possibilities of UAV and Landsat in observation of small inland water bodies," in 2015 International Conference on Information Society (i-Society), London, 2015.
    [9] W. Zang, J. Lin, Y. Wang and H. Tao, "Investigating small-scale water pollution with UAV Remote Sensing Technology," in World Automation Congress 2012, Puerto Vallarta, Mexico, 2012.
    [10] J. Li, Y. Liu, S. Du, P. Wu and Z. Xu, "Hierarchical and Adaptive Phase Correlation for Precise Disparity Estimation of UAV Images," IEEE Transactions on Geoscience and Remote Sensing, vol. 54, no. 12, pp. 7092-7104, 12 2016.
    [11] O. Eroglu and G. Yilmaz, "A novel fast and accurate algorithm for Terrain Referenced UAV localization," in 2013 International Conference on Unmanned Aircraft Systems (ICUAS), Atlanta, GA, 2014.
    [12] M. A. Zayer, T. Sam, J. Bhandari, D. Feil-Seifer and F. Eelke, "Exploring the Use of a Drone to Guide Blind Runners," in In Proceedings of the 18th International ACM SIGACCESS Conference on Computers and Accessibility (ASSETS '16), ACM, New York, NY, USA, 2016.
    [13] M. Avila, M. Funk and N. Henze, "DroneNavigator: Using Drones for Navigating Visually Impaired Persons," in In Proceedings of the 17th International ACM SIGACCESS Conference on Computers & Accessibility (ASSETS '15), ACM, New York, NY, USA, 2015.
    [14] S. G. Zwaan and E. I. Barakova, "Boxing against drones: Drones in sports education," in In Proceedings of the The 15th International Conference on Interaction Design and Children (IDC '16), ACM, New York, NY, USA, 2016.
    [15] J. Kim, J. Lee, J. Jeong, H. Kim, J. S. Park and T. Kim, "SAN: Self-Adaptive Navigation for Drone Battery Charging in Wireless Drone Networks," in 2016 30th International Conference on Advanced Information Networking and Applications Workshops (WAINA), Crans-Montana, 2016.
    [16] E. W. Dijkstra, "A note on two problems in connexion with graphs," Numerische Mathematik, pp. 269-271, 1959.
    [17] M. B. Cruzan, B. G. Weinstein, M. R. Grasty, B. F. Kohrn, E. C. Hendrickson, T. M. Arredondo and P. G. Thompson, "Small Unmanned Aerial Vehicles (Micro-Uavs, Drones) in Plant Ecology," in Applications in Plant Sciences 2016 4(9): 1600041, 2016.
    [18] T.-C. Su, Y.-C. Lu, Y.-M. Tung and C.-M. Yen, "Assist To Traffic Accidents Investigation By Using Drone- Taking Taichung City As Examples," in Journal of Traffic Science, 2016.
    [19] 文. 周 且 典. 楊, “多軸飛行器應用於道路交通事故重建之研究,” 於 105年道路交通安全與執法研討會, 2016.
    [20] Procab, "PIX4D," Pix4D , 2017. [Online]. Available: https://pix4d.com/.
    [21] C. GmbH, "Accident Scene Diagrams," 2017. [Online]. Available: http://draw.accidentsketch.com/.
    [22] J-Painter, "J-Painter-online image editor," 7 6 2016. [Online]. Available: http://www.izhuk.com/painter/diagram/car-accident-diagram.html.
    [23] H. Quiroga, "Accident Diagram," 2017. [Online].
    [24] SmartDraw, "Accident Reconstruction Dialogam," 2017. [Online]. Available: https://www.smartdraw.com/accident-reconstruction/examples/.
    [25] 內政部等, “道路交通事故處理辦法,” 11 11 2013. [線上]. Available: http://www.6law.idv.tw/6law/law3/%E9%81%93%E8%B7%AF%E4%BA%A4%E9%80%9A%E4%BA%8B%E6%95%85%E8%99%95%E7%90%86%E8%A6%8F%E7%AF%84.htm.
    [26] 交通部道安委員會 且 內政部警政署, 道路交通事故處理手冊, 2000.
    [27] 志. 蘇 且 龍. 林, “提升交通事故蒐證品質之研究,” 交通學報, 第 冊3, 編號 2, pp. 129-156, 12 2003.
    [28] V. Srinivasan, T. Kalbarczyk and C. Julien, "Demo abstract disseminate: A demonstration of device-to-device media dissemination," in 2015 IEEE International Conference on Pervasive Computing and Communication Workshops (PerCom Workshops), St. Louis, MO, 2015.
    [29] 交通部公路總局, “道路交通標誌標線號誌設置規則,” 2014. [線上]. Available: https://www.mvdis.gov.tw/webMvdisLaw/LawContent.aspx?LawID=A0011025. [存取日期: 4 9 2014].
    [30] 行政院公共工程委員會, “公共工程技術資料庫,” 2008. [線上]. Available: http://pcces.pcc.gov.tw/csinew/Default.aspx?FunID=Fun_10_3.
    [31] Wikipedia, "High-dynamic-range imaging," 2017. [Online]. Available: https://en.wikipedia.org/wiki/High-dynamic-range_imaging.
    [32] Wikipedia, "Exposure value," 2017. [Online]. Available: https://en.wikipedia.org/wiki/Exposure_value.
    [33] 丙. 詹 且 英. 陳, “道路交通事故現場管制與跡證蒐集之探討,” 於 101年道路交通安全與執法研討會, 2012.
    [34] Android, "Android Delopers API," 2016. [Online]. Available: https://developer.android.com/reference/android/view/GestureDetector.SimpleOnGestureListener.html.
    [35] Wikipedia, "MD5," 4 1992. [Online].
    [36] M. Obaid, O. Mubin, C. A. Basedow, A. A. Ünlüer, M. J. Bergström and M. Fjeld, "A Drone Agent to Support a Clean Environment," in In Proceedings of the 3rd International Conference on Human-Agent Interaction (HAI '15), ACM, New York, NY, USA, 2015.

    QR CODE