簡易檢索 / 詳目顯示

研究生: 趙崇臻
Chung-Chen Chao
論文名稱: 雙級同軸離心式抽水泵浦之性能改善與模擬分析
Numerical Analysis and Performance Enhancement of the Two-Stage Coaxial Centrifugal Water Pump
指導教授: 林顯群
Sheam-Chyun Lin
口試委員: 周永泰
Yung-Tai Chou
黃緒哲
Shiuh-Jer Huang
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 210
中文關鍵詞: 雙級同軸離心式泵浦參數分析流/聲場數值分析性能曲線聲場特性
外文關鍵詞: Two-stage centrifugal pump, Coaxial arrangement, Parametric study, Numerical flow/acoustic simulations, Aerodynamic performance curve
相關次數: 點閱:247下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究目標為家用雙級同軸離心式泵浦之性能改善,其特點為採用兩級葉輪固定在同軸,故只需要一個馬達並可減少安裝所需空間,但這也使兩級動葉輪間的流道變得十分複雜,離開第一級葉輪的流體必須在極狹窄空間轉180度,再由外圍以徑向往中心進入第二級葉輪入口 ; 另外離開第二級動葉輪的流體也有著相似的情形,必須在短距離轉向才能由泵出口排出,上述問題成為提升泵浦性能及效率時的巨大挑戰。本研究選用CFD軟體Fluent作為分析工具,對同軸離心泵浦做流場聲場的數值模擬,由流場可視化了解內部流場,進一步提出相對應之改善方案,主要的改善對象分為葉輪及流道 ; 首先對靜葉輪和動葉輪進行參數優化,其中靜葉輪考量的參數有入口角度、葉片擺設方向及葉數,而動葉輪包括葉片角度和葉片數。
數值參數分析結果顯示,動葉輪在第一級11葉、第二級8葉、入口角60∘和出口角50∘的參數組合下,其流量在低揚程(5.56m)時增加7.9% (由138到148.9 LPM),於高揚程(24m)時上升67% (由34.8到58.1 LPM) ; 至於效率部份,則在低揚程維持在18.1%,另外高揚程則有顯著提升從45.0%提升到52.9%。接著進行各連接流道部份之改良,包括進口與出口銜接流道的流線化,結果顯示成功地去除流場混亂與局部高壓區,也提升高揚程之流量和效率。最後搭配優化葉輪和改良流道的新泵浦設計,其數值計算結果顯示,於24m的高揚程操作情形下,其流量可增加到72.8 LPM,為原始設計的2倍多,靜壓效率也再增加4%到56.9%,同時所產生的聲壓分貝值則維持不變。綜合歸納而言,本數值研究成功建立一套系統分析模式,可用來改良泵浦的靜葉輪、動葉輪及流道,且此方法對於雙級同軸離心式泵浦在高揚程時有明顯的效果。


This research intends to enhance the aerodynamic performance of a two-stage coaxial centrifugal pump, which is used extensively for the household water supply. Noticeably, the coaxial arrangement on two impellers, which needs only one motor, is adopted to reduce the installation space and the pump cost. However, it also induces a tremendous difficulty in designing a proper flow pathway between two parallel impellers fixed on the same axis. Clearly, the outflow of the 1st rotor needs to reverse its direction completely at the outer periphery within a tiny distance between the rotor and the circular housing; thereafter, this stream must flow radially inward to reach the 2nd rotor inlet uniformly for ensuring effectively energy transfer along the blade passage. Moreover, the similar challenge exists for the outflux at the 2nd rotor making two vertical turns before reaching the pump discharge. The foregoing problems form an incredible task for engineers to secure a good aerodynamic performance with a fair efficiency, and also becomes the motivation of this work.
With the aids of CFD technology, this study chooses Ansys Fluent as the analysis tool to examine flow field, aerodynamic performance, and static efficiency of the reference pump. Thereafter, the adverse flow phenomena are identified for proposing further improvements. This numerical study consists of two improving efforts on rotors and flow paths in sequence. Firstly, the comprehensive parametric studies on the stator and rotor is executed systematically to attain an optimum rotor set. The parameters considered here include the rotating direction and the inlet blade angle of stator, the blade angles and numbers of the running impellers. Consequently, with 11 and 8 blades for the 1st and the 2nd running rotors, the combination of 60∘inlet and 50∘outlet blade angles results in the flowrate increases of 7.9% (from 138.0 to 148.9 LPM) and 67% (from 34.8 to 58.1 LPM) for the low-head (5.56 m) and the high-head (24 m) operating points, respectively. Besides, the static efficiencies are near the same at 18.1% for the 5.6-m head, and enhanced significantly from 45.0% to 52.9% for the 24-m operating point.
Lastly, operating under the 24-m head, this new pump with the optimized rotor and the improved flow pathway yields a remarkable flowrate enlargement up to 72.8 LPM (i.e., twice of the original output) and an extra 4% efficiency rise with the same sound pressure level generation. In summary, this numerical investigation successfully establishes a systematic scheme to analyze the performance influences induced by various parameters on the stator, the rotor, and the connecting passageway. Furthermore, the results of aforementioned parametric studies are applied to optimize this 2-stage, coaxial centrifugal pump for attaining the significant enlargements on flowrate and efficiency for the high-head operating condition.

摘 要 I Abstract III 致 謝 V 目 錄 VI 圖索引 X 表索引 XV 符號索引 XVI 第一章 緒論 1 1.1 前言 1 1.2 文獻回顧 5 1.3 研究流程與目的 10 第二章 雙級同軸離心式泵浦之簡介與理論 16 2.1 雙級同軸離心式泵浦之運作原理 16 2.2 揚程定義 19 2.2.1 離心力之壓力水頭理論 19 2.2.2 泵之實際揚程與總揚程 28 2.3 離心泵的比速度與性能特點曲線 32 2.3.1 比速度 32 2.3.2 性能特點曲線 33 2.4 雙級同軸離心式水泵設計 34 2.4.1 葉輪葉形之設定 34 2.4.2 葉片角度之設計 38 2.4.3 流道設計 41 2.5 泵浦噪音 41 第三章 數值方法 48 3.1 統御方程式 49 3.2 數值計算 50 3.2.1 解題程序 51 3.2.2 離散化方程式 54 3.2.3 上風差分法 55 3.2.4 速度與壓力耦合 57 3.3 紊流模組 60 3.3.1 Standard k-ε紊流模式 61 3.3.2 壁面函數 63 3.4 邊界條件 68 第四章 原始雙級同軸離心泵浦之數值模擬 70 4.1 原始數值模型之建立 70 4.2 網格規劃 76 4.3 原始泵浦之流場分析與缺失探討 81 4.3.1 原始泵浦之數值模擬驗證與流場分析 81 4.3.2 原始泵浦之流場缺失整理 88 第五章 離心式泵浦之參數分析與性能優化 92 5.1 靜葉輪之參數改善 92 5.2 動葉輪之參數改善 106 5.2.1 動葉片之入口角及出口角 106 5.2.2 動葉輪之葉片數搭配 116 5.2.3 動葉輪最佳搭配 141 5.3 流道改善 143 5.4 最佳葉輪和改善流道搭配之優化泵浦設計 151 第六章 聲場分析 154 6.1 雙級同軸式泵浦之模擬噪音比較 155 6.1.1 改善葉輪之聲場比較 156 6.1.2 流道改善 167 6.2 聲場與流場之相互關係 171 第七章 結論與建議 176 7.1 結論 176 7.2 建議 181 參考文獻 183

[1] 大町昌義原著,徐景福譯,渦旋泵浦之設計,正言出版社,1978。
[2] 黃煜珅,"離心式泵浦之性能優化與模擬分析",國立台灣科技大學機械工程研究所,碩士論文,2020。
[3] 洪淑美,"左心室輔助器之設計與數值分析",台灣科技大學機械所,碩士論文,2004。
[4] Sorensen, E., “Potential Flow through Centrifugal Pumps and Turbines,” NACA TM-973,1941.
[5] Acosta, A. J., “An Experimental and Theoretical Investigation of Two-Dimensional Centrifugal Pump Impeller,” Trans. ASME, Vol. 76, pp. 749-763, 1954.
[6] Bowerman, R. and Acosta, A., “Effect of the Volume on Performance of Centrifugal Pump Impeller,” Trans. ASME, Vol. 79, pp. 1057-1069, 1957.
[7] Eckardt, D., “Instantaneous Measurements in the Jet-Wake Discharge Flow of a Centrifugal Compressor Impeller,” ASME Journal of Engineering for Power, Vol. 97, pp. 337-346, 1975.
[8] Johnson, M. W. and Moore, J., “The Influence of Flow Rate on the Wake in a Centrifugal Impeller,” ASME Journal of Engineering for Power, Vol. 105, pp. 33-39, 1983.
[9] 神宮敬著,張兆豐譯,泵之設計製圖,台隆書店出版,1992。
[10] Inoue, M. and Cumpsty, N. A., “Experimental Study of Centrifugal Impeller Discharge Flow in Vaneless and Vaned Diffusers,” ASME Journal of Engineering for Gas Turbine and Power, Vol. 106, pp. 455-467, 1984.
[11] Roth, M. and Peikert, R., "Flow Visualization for Turbomachinery Design," Visualization '96 Proceedings, pp. 381-384, 1996.
[12] Jude, L. and Homentcovschi, D., "Numerical Analysis of the Inviscid Incompressible Flow in Two-Dimensional Radial-Flow Pump Impellers," ELSEVIER, Engineering Analysis with Boundary Elements, Vol. 22, pp. 271-279, 1998.
[13] Yu, S. C. M., Ng, B. T. H., Chan, W. K., and Chua, L. P., “The Flow Patterns within the Umpeller Passages of a Centrifugal Blood Pump Model,” ELSEVIER, Medical Engineering and Physics, Vol. 22, pp. 381-393, 2000.
[14] Marek, Behr, Dhruv, Arora, and Sebastian, Schulte-Eistrup, “Prediction of Flow Features in Centrifugal Blood Pumps,” European Conference on Computational Mechanics(ECCM), Cracow, Poland, 2001.
[15] Gonzalez, J., Fernandez, J., Blanco E., and Santolaria, C., "Numerical Simulation of the Dynamic Effect due to Impeller-Volute Interaction in a Centrifugal Pump," Transactions of ASME, Journal of Fluids Engineering, Vol. 124, pp. 314-318, 2002.
[16] Hamkins, C.P. and Bross, S., "Use of Surface Flow Visualization Methods in Centrifugal Pump Design," Transactions of ASME, Journal of Fluids Engineering, Vol. 124, pp. 314-318, 2002.
[17] Gülich, J. F. and Winterthur, L., " Effect of Reynolds-Number and Surface Roughness on the Efficiency of Centrifugal Pumps," ASME Journal of Fluids Engineering, Vol. 125, pp. 670-679, 2003.
[18] Raúl B., Jorge, P. and Eduardo, B., “Numerical Analysis of the Unsteady Flow in the Near-Tongue Region in a Volute-Type Centrifugal Pump for Different Operating Points,” ELSEVIER, Computers and Fluids, Vol. 39, pp. 895-870, 2010.
[19] Shigemitsu, T., Fukutomi, J., and Kaji, K., "Influence of Blade Outlet Angle and Blade Thickness on Performance and Internal Flow of Mini Centrifugal Pump," Proceedings of the ASME-JSME-KSME Joint Fluids Engineering Conference, Hamamatsu, Shizuoka, Japan, July 24-29, 2011.
[20] 梶原滋美著,張兆豐譯,泵及其使用方法,台隆書店出版,1992。
[21] Neise, W., “Noise Reduction in Centrifugal Fans: A Literature Survey,” Journal of Sound and Vibration, Vol. 45, No. 3, pp. 375-403, 1976.
[22] Kondo, L. and Aoki, Y., “Noise Reduction in Turbo Fans for Air Conditioners,” Technical Review-Mitsubishi Heavy Industries, Vol. 26, No. 3, pp. 173-179, 1989.
[23] Fluent 6.2 Documentation, FLUENT INC.
[24] Launder, B. E. and Spalding, D. B., “The Numerical Computation of Turbulent Flows,” Computer Methods in Applied Mechanics and Engineering, Vol. 3, pp. 269-289, 1974.
[25] 蔡書馨,"離心式泵浦效率改良之數值與實驗研究",國立台灣科技大學機械工程研究所,碩士論文,2014。
[26] 吳習,"不同類型的離心式風機應用於空氣清淨機開發之數值模擬分析",國立台灣科技大學機械工程研究所,碩士論文,2020。

無法下載圖示 全文公開日期 2027/02/08 (校內網路)
全文公開日期 2032/02/08 (校外網路)
全文公開日期 2032/02/08 (國家圖書館:臺灣博碩士論文系統)
QR CODE