簡易檢索 / 詳目顯示

研究生: 林郁民
Yu-Min - Lin
論文名稱: 三口二位電磁閥之流場模擬分析
Flowfield Analysis of a 3/2 Solenoid Valve
指導教授: 林顯群
Sheam-Chyun Lin
口試委員: 陳呈芳
none
郭鴻森
none
顏鴻程
none
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 129
中文關鍵詞: 電磁閥暫態模擬分析反應速率噴嘴直徑氣隙距離
外文關鍵詞: Solenoid Valve, Compressible CFD Simulation, TransientsCharacteristics, Pressure Response Time, Parametric Study
相關次數: 點閱:199下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 氣壓式電磁閥已廣泛運用在車輛的各種控制系統中,由於車輛在動態行駛中遭遇突發狀況時需要立即減速或轉向,為了提升其安全性,則必需加快氣壓式電磁閥在作動時的反應速率,進而縮短其反應時間且更有效率地達到作動目標,故電磁閥在作動時需具備極佳之反應速率及穩定性。因此本文將選用應用在車輛控制系統之三口二位氣壓式電磁閥為研究目標,運用知名的計算流體力學分析軟體Fluent,藉其針對電磁閥之穩態與暫態流場結構進行特性分析,且分別討論其流場分佈與缺失,以及針對其壓力反應時間進行估算,並比較壓力反應時間是否符合國際 Tier1車廠規範。然而觀察原始流場分佈後發現,噴嘴出口處至閥芯頂部區壓力甚大,由上述結果推測,此區域之結構設計為影響系統阻抗之關鍵,亦將影響其壓力上升反應時間;因此據以執行流場優化,探討噴嘴直徑以及氣隙距離對於電磁閥性能之影響。完成上述參數之模擬分析後,確認兩者結構設計設計對於電磁閥性能皆有甚大之影響,當噴嘴直徑增大時,其壓力反應時間縮短;當氣隙距離增大時,亦將縮短其壓力反應時間。綜合歸納上述分析後,本文探討之結構設計參數成功地縮短電磁閥作動時之壓力反應時間,並且建立分析改善模式可提供電磁閥設計之重要參考。


    Pneumatic solenoid valve has been widely used in the vehicle control systems for meeting the rapid-reaction demand triggered by the dynamic conditions encountered during the driving course of vehicle. For ensuring the safety of human being, the reliable and effective solenoid valve is in great demand to shorten the reaction time and thus becomes the topic of this research. This numerical study chooses a commercial 3/2-way solenoid valve as the reference valve for analyzing its performance. At first, CFD software Fluent is adopted to simulate the steady flow field associated with the valve configuration. Then, the comprehensive flow visualization is implemented to identify the locations of adverse flow patterns, which are critical for proposing the improving alternatives. Accordingly, it is found that a high-pressure region exists in the region between the nozzle exit and the top of spool. Thereafter, a parametric study on the nozzle diameter and the distance between nozzle and spool top is imposed to understand their influences on the pressure response characteristics of valve. Moreover, the unsteady CFD simulation is carried out on the electromagnetic valve to attain the transient characteristics for estimating the pressure response time, which will be compared with international Tier-1 standard later. Consequently, this numerical analysis shows that the pressure response time is reduced for an increasing nozzle diameter and an enlarged distance between the nozzle and the spool. Also, all the valve designs considered here meet with the standard of Tier 1. In conclusion, this work successfully establishes a rigorous and systematic CFD scheme, combined the steady and unsteady simulations, to evaluate the performance of pneumatic solenoid valve. Also, it provides the important information regarding the key design parameters of solenoid valve.

    摘要 Abstract 致謝 目錄 圖索引 表索引 符號索引 第一章 緒論 第二章 氣壓控制系統之方向控制閥簡介 第三章 物理模型 第四章 數值方法 第五章 原始電磁閥模型於常開狀態之模擬分析 第六章 改良電磁閥模型於常開狀態之模擬分析 第七章 原始電磁閥模型於常閉狀態之模擬分析 第八章 結論與建議 參考文獻

    [1]曾賢壎,陳義男,“氣壓學”,新科技書局,1990年。
    [2]郭承亮,“自動化技術”,中華科技大學工業工程與管理系,cc.cust.edu.tw/~kcl/PPT/952/IEM/04.ppt.
    [3]徐業良,“氣液壓系統”,元智大學機械系大三機械設計課程教材,2005年。
    [4]G. Tao, H.Y. Chen, Y.Y. J, and Z.B. He, “Optimal design of the magnetic field of a high-speed response solenoid valve”, Journal of Materials Processing Technology, Volume 129, Issues 1–3, October 2002, pp. 555–558.
    [5]Elif Erzan Topçu, İbrahim Yüksel, and Zeliha Kamış, “Development of electro-pneumatic fast switching valve and investigation of its characteristics”, Mechatronics, Volume 16, Issue 6, July 2006, pp. 365–378.
    [6]Lan Wang, Guo-Xiu Li, Hun-Long Xu, Xing Xi, Xiao-Jun Wu, and Shu-Ping Sun, “Effect of characteristic parameters on the magnetic properties of solenoid valve for high-pressure common rail diesel engine”, Energy Conversion and Management, Volume 127, November 2016, pp. 656–666.
    [7]M. Borghi, M. Milani, and R. Paoluzzi, “Stationary axial flow force analysis on compensated spool valves”, Int. J. Fluid Power, Volume 1, No. 1, 2000, pp. 17–25.
    [8]R. Amirante, G. Del Vescovo, and A. Lippolis, “Evaluation of the flow forces on an open centre directional control valve by means of a computational fluid dynamic analysis”, Energy Conversion and Management, Volume 47, 2006, pp. 1748–1760.
    [9]R. Amirante, P.G. Moscatellib, and L.A. Catalanoa, “Evaluation of the flow forces on a direct (single stage) proportional valve by means of a computational fluid dynamic analysis”, Energy Conversion and Management, Volume 48, Issue 3, March 2007, pp. 942–953.
    [10]Ying-Xue Ma, and De-Chuan Sun, “The numerical simulation of the flow field in an electromagnetic valve”, Machine Tool & Hydraulics, Volume 36, No. 1, Jan 2008, pp. 111–113.
    [11]Rong Li, Yong-Bao Feng, and Jie Liu, An Zhang, and Xi-Kang Li, “Three-dimensional simulation and analysis of inner flow field for solenoid valve based on fluent”, 液壓與氣動, Volume 25, No. 10, 2013, pp. 96-99.
    [12]Cui-Hua Wei, Ti-Bing Xiao, and Yi-Zhang Wen, Chao-Huan Liang, and Bai-Hai Wu, “The Three Dimensional Flow Field of Cartridge Valve Simulation Based on Fluent and Experimental Analysis”, 液壓氣動與密封, Volume 36, No. 6, 2013.
    [13]P. Bordovsky, K. Schmitz, and H. Murrenhoff, “CFD simulation and measurement of flow forces acting on a spool valve”, Proceedings of the 10th International Fluid Power Conference, Dresden, 2016, pp. 473-484.
    [14]交通部統計查詢網,機動車輛登記數,http://stat.motc.gov.tw/mocdb/stmain.jsp?sys=100&funid=b3301。
    [15]陳發林,“空液壓控制的分析與設計”,全華科技圖書股份有限公司,1985年。
    [16]呂淮熏,黃勝銘,郭興家,“氣液壓學”,高立圖書有限公司,2015年。
    [17]許以德,“順序控制的基礎與應用”,正文書局有限公司,1986年。
    [18]Ansys Fluent User’s Guide-14.5, ANSYS Inc., 2012.
    [19]B. E. Launder, and D. B. Spalding, “Lectures in mathematical models of turbulence”, Academic Press, London, England, 1972.
    [20]R. Smirnov, S. Shi, and I. Celik, “Random flow generation technique for large eddy simulations and particle-dynamics modeling”, Journal of Fluids Engineering, Vol. 123, 2001, pp. 359-371.
    [21]A. Uranga, P. Persson, M. Drela, and J. Peraire, “Implicit large eddy simulation of transitional flows over airfoils and wings”, 19th AIAA computational fluid dynamics, San Antonio, Texas, 2009.
    [22]J. O. Hinze, Turbulence, McGraw-Hill Publishing Co, 1975.
    [23]S. V. Patankar, and D. B. Spalding, "A calculation procedure for heat mass and momentum transfer in three-dimensional parabolic flows," International Journal of Heat Mass Transfer, Vol. 15, pp. 1787-1806, 1972.

    無法下載圖示 全文公開日期 2022/01/25 (校內網路)
    全文公開日期 2037/01/25 (校外網路)
    全文公開日期 2037/01/25 (國家圖書館:臺灣博碩士論文系統)
    QR CODE