簡易檢索 / 詳目顯示

研究生: 葉紹琥
Shaw-Hu Yeh
論文名稱: 可撓式自吸濕清淨電動能源產生裝置
A Foldable and Self-Operating Electrokinetic Energy Generator with Moisture Absorption Ability
指導教授: 葉禮賢
Li-Hsien Yeh
口試委員: 吳嘉文
Kevin C.-W. Wu
李文亞
Wen-Ya Lee
王丞浩
Chen-Hao Wang
葉禮賢
Li-Hsien Yeh
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 105
中文關鍵詞: 離子傳輸電動能源轉換吸濕產電有機金屬框架二維材料毛細作用
外文關鍵詞: Ion transport, Electrokinetic energy conversion, Moisture-enabled power generation, Metal-organic framework (MOF), Capillary action, Two-dimensional material
相關次數: 點閱:312下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報


摘要 I Abstract II 誌謝 IV 目錄 V 圖目錄 VIII 表目錄 XIII 第一章 緒論 1 1.1 前言 1 1.2 文獻回顧 5 1.3 研究動機 15 1.3.1 植物中水運輸途徑啟發之自吸濕電動能源產生裝置 15 1.3.2 可撓式自吸濕之高效清淨電動能源產生裝置 16 第二章 原理機制 18 2.1 電雙層 18 2.2 電動力效應 20 2.3 電動能源轉換 21 第三章 實驗設備與方法 24 3.1 實驗藥品與設備 24 3.1.1 實驗藥品 24 3.1.2 實驗設備 26 3.1.3 量測儀器架設 27 3.1.4 實驗結構分析 29 3.2 實驗方法 31 第四章 結果與討論 35 4.1 啟發於植物水循環之新型自吸濕電動能源產生裝置 35 4.2 材料分析 35 4.2.1 碳材分析 (石墨烯/碳黑) 35 4.2.2 MOF-808分析 36 4.3 裝置特性分析 37 4.4 裝置產電效能分析 38 4.4.1 各層重要性實驗驗證 38 4.4.2 MOF-808的保水性實驗驗證 38 4.4.3 塗佈之氯化鈣濃度實驗驗證 39 4.4.4 氯化鈣塗佈長度實驗驗證 39 4.4.5 薄膜尺寸實驗驗證 40 4.4.6 環境溫度效應實驗驗證 41 4.4.7 環境濕度效應實驗驗證 41 4.5裝置真實電動能源輸出結果分析 42 4.6 優化設計的裝置真實電動能源輸出結果分析 42 4.6.1 導電層優化 42 4.6.2 CNT濃度優化 44 4.6.3 導電層優化之新型吸濕電動能源產生裝置產電效能結果分析 44 4.7 長效高效應用結果分析 45 4.7.1 長效性實驗驗證 45 4.7.2 充放電速率及循環實驗驗證 45 4.7.3 功率放大及實際應用實驗驗證 46 第五章 結論 80 參考文獻 82

1. Eriksson, S.; Bernhoff, H.; Leijon, M., Evaluation of Different Turbine Concepts for Wind Power. Renew. Sust. Energ. Rev. 2008, 12, 1419-1434.
2. Bartle, A., Hydropower Potential and Development Activities. Energy Policy 2002, 30, 1231-1239.
3. Shahsavari, A.; Akbari, M., Potential of Solar Energy in Developing Countries for Reducing Energy-Related Emissions. Renew. Sust. Energ. Rev. 2018, 90, 275-291.
4. Huang, G.; Chen, F.; Wei, D.; Zhang, X.; Chen, G., Biodiesel Production by Microalgal Biotechnology. Appl. Energy 2010, 87, 38-46.
5. Quoilin, S.; Van Den Broek, M.; Declaye, S.; Dewallef, P.; Lemort, V., Techno-Economic Survey of Organic Rankine Cycle (ORC) Systems. Renew. Sust. Energ. Rev. 2013, 22, 168-186.
6. Chen, J.; Yang, J.; Li, Z. L.; Fan, X.; Zi, Y. L.; Jing, Q. S.; Guo, H. Y.; Wen, Z.; Pradel, K. C.; Niu, S. M.; Wang, Z. L., Networks of Triboelectric Nanogenerators for Harvesting Water Wave Energy: A Potential Approach toward Blue Energy. ACS Nano 2015, 9, 3324-3331.
7. Aderinto, T.; Li, H., Ocean Wave Energy Converters: Status and Challenges. Energies 2018, 11, 1250.
8. Rourke, F. O.; Boyle, F.; Reynolds, A., Tidal Energy Update 2009. Appl. Energy 2010, 87, 398-409.
9. Chowdhury, M. S.; Rahman, K. S.; Selvanathan, V.; Nuthammachot, N.; Suklueng, M.; Mostafaeipour, A.; Habib, A.; Akhtaruzzaman; Amin, N.; Techato, K., Current Trends and Prospects of Tidal Energy Technology. Environ. Dev. Sustain. 2021, 23, 8179-8194.
10. Zhang, Z.; Sui, X.; Li, P.; Xie, G. H.; Kong, X. Y.; Xiao, K.; Gao, L. C.; Wen, L. P.; Jiang, L., Ultrathin and Ion-Selective Janus Membranes for High-Performance Osmotic Energy Conversion. J. Am. Chem. Soc. 2017, 139, 8905-8914.
11. Chang, C. W.; Chu, C. W.; Su, Y. S.; Yeh, L. H., Space Charge Enhanced Ion Transport in Heterogeneous Polyelectrolyte/Alumina Nanochannel Membranes for High-Performance Osmotic Energy Conversion. J. Mater. Chem. A 2022, 10, 2867-2875.
12. Siria, A.; Bocquet, M. L.; Bocquet, L., New Avenues for the Large-Scale Harvesting of Blue Energy. Nat. Rev. Chem. 2017, 1, 0091.
13. Wang, Z. L.; Jiang, T.; Xu, L., Toward the Blue Energy Dream by Triboelectric Nanogenerator Networks. Nano Energy 2017, 39, 9-23.
14. Zhao, T. C.; Xu, M. Y.; Xiao, X.; Ma, Y.; Li, Z.; Wang, Z. L., Recent Progress in Blue Energy Harvesting for Powering Distributed Sensors in Ocean. Nano Energy 2021, 88, 106199.
15. Osterle, J., Electrokinetic Energy Conversion. J. Appl. Mech. 1964, 31, 161-164.
16. Burgreen, D.; Nakache, F., Efficiency of Pumping and Power Generation in Ultrafine Electrokinetic Systems. J. Appl. Mech. 1965, 32, 675-679.
17. Van der Heyden, F. H.; Bonthuis, D. J.; Stein, D.; Meyer, C.; Dekker, C., Electrokinetic Energy Conversion Efficiency in Nanofluidic Channels. Nano Lett. 2006, 6, 2232-2237.
18. Bocquet, L.; Charlaix, E., Nanofluidics, from Bulk to Interfaces. Chem. Soc. Rev. 2010, 39, 1073-1095.
19. Wall, S., The History of Electrokinetic Phenomena. Curr. Opin. Colloid Interface Sci. 2010, 15, 119-124.
20. Delgado, A. V.; Gonzalez-Caballero, E.; Hunter, R. J.; Koopal, L. K.; Lyklema, J., Measurement and Interpretation of Electrokinetic Phenomena - (IUPAC Technical Report). Pure Appl. Chem. 2005, 77, 1753-1805.
21. van der Heyden, F. H. J.; Bonthuis, D. J.; Stein, D.; Meyer, C.; Dekker, C., Power Generation by Pressure-Driven Transport of Ions in Nanofluidic Channels. Nano Lett. 2007, 7, 1022-1025.
22. Olthuis, W.; Schippers, B.; Eijkel, J.; van den Berg, A., Energy from Streaming Current and Potential. Sens. Actuators B Chem. 2005, 111, 385-389.
23. Yang, G. L.; Lei, W. W.; Chen, C.; Qin, S.; Zhang, L. Z.; Su, Y. Y.; Wang, J. M.; Chen, Z. Q.; Sun, L.; Wang, X. G.; Liu, D., Ultrathin Ti3C2Tx (MXene) Membrane for Pressure-Driven Electrokinetic Power Generation. Nano Energy 2020, 75, 104954.
24. Xue, G.; Xu, Y.; Ding, T.; Li, J.; Yin, J.; Fei, W.; Cao, Y.; Yu, J.; Yuan, L.; Gong, L., Water-Evaporation-Induced Electricity with Nanostructured Carbon Materials. Nat. Nanotechnol. 2017, 12, 317-321.
25. Yun, T. G.; Bae, J.; Rothschild, A.; Kim, I.-D., Transpiration Driven Electrokinetic Power Generator. ACS nano 2019, 13, 12703-12709.
26. Martin, R. M., Piezoelectricity. Phys. Rev. B 1972, 5, 1607-1613.
27. Dubi, Y.; Di Ventra, M., Thermoelectric Effects in Nanoscale Junctions. Nano Lett. 2009, 9, 97-101.
28. Wang, S.; Lin, L.; Wang, Z. L., Nanoscale Triboelectric-Effect-Enabled Energy Conversion for Sustainably Powering Portable Electronics. Nano Lett. 2012, 12, 6339-6346.
29. Srivastava, R.; Abraham, M. G., Nonequilibrium Thermodynamics of Electroosmosis of Liquid Mixtures. Studies on Acetone—Methanol Mixtures. J. Colloid Interface Sci. 1976, 57, 58-65.
30. Yang, J.; Lu, F.; Kostiuk, L. W.; Kwok, D. Y., Electrokinetic Microchannel Battery by Means of Electrokinetic and Microfluidic Phenomena. J Micromech. Microeng. 2003, 13, 963-970.
31. Ren, Y.; Stein, D., Slip-Enhanced Electrokinetic Energy Conversion in Nanofluidic Channels. Nanotechnology 2008, 19, 195707.
32. Chein, R.; Liao, C.; Chen, H., Electrokinetic Energy Conversion Efficiency Analysis Using Nanoscale Finite-Length Surface-Charged Capillaries. J. Power Sources 2009, 187, 461-470.
33. Dhiman, P.; Yavari, F.; Mi, X.; Gullapalli, H.; Shi, Y.; Ajayan, P. M.; Koratkar, N., Harvesting Energy from Water Flow over Graphene. Nano Lett. 2011, 11, 3123-3127.
34. Newaz, A.; Markov, D.; Prasai, D.; Bolotin, K., Graphene Transistor as a Probe for Streaming Potential. Nano Lett. 2012, 12, 2931-2935.
35. Yin, J.; Li, X.; Yu, J.; Zhang, Z.; Zhou, J.; Guo, W., Generating Electricity by Moving a Droplet of Ionic Liquid Along Graphene. Nat. Nanotechnol. 2014, 9, 378-383.
36. Yin, J.; Zhang, Z.; Li, X.; Yu, J.; Zhou, J.; Chen, Y.; Guo, W., Waving Potential in Graphene. Nat. Commun. 2014, 5, 3582.
37. Zhang, G.; Duan, Z.; Qi, X.; Xu, Y.; Li, L.; Ma, W.; Zhang, H.; Liu, C.; Yao, W., Harvesting Environment Energy from Water-Evaporation over Free-Standing Graphene Oxide Sponges. Carbon 2019, 148, 1-8.
38. Li, C.; Tian, Z.; Liang, L.; Yin, S.; Shen, P. K., Electricity Generation from Capillary-Driven Ionic Solution Flow in a Three-Dimensional Graphene Membrane. ACS Appl. Mater. Interfaces 2019, 11, 4922-4929.
39. Shao, B.; Wu, Y.; Song, Z.; Yang, H.; Chen, X.; Zou, Y.; Zang, J.; Yang, F.; Song, T.; Wang, Y., Freestanding Silicon Nanowires Mesh for Efficient Electricity Generation from Evaporation-Induced Water Capillary Flow. Nano Energy 2022, 94, 106917.
40. Liu, X.; Gao, H.; Ward, J. E.; Liu, X.; Yin, B.; Fu, T.; Chen, J.; Lovley, D. R.; Yao, J., Power Generation from Ambient Humidity Using Protein Nanowires. Nature 2020, 578, 550-554.
41. Zhao, F.; Cheng, H.; Zhang, Z.; Jiang, L.; Qu, L., Direct Power Generation from a Graphene Oxide Film under Moisture. Adv. Mater. 2015, 27, 4351-4357.
42. Xu, T.; Ding, X. T.; Shao, C. X.; Song, L.; Lin, T. Y.; Gao, X.; Xue, J. L.; Zhang, Z. P.; Qu, L. T., Electric Power Generation through the Direct Interaction of Pristine Graphene-Oxide with Water Molecules. Small 2018, 14, 1704473.
43. Lyu, Q. Q.; Peng, B. L.; Xie, Z. J.; Du, S.; Zhang, L. B.; Zhu, J. T., Moist-Induced Electricity Generation by Electrospun Cellulose Acetate Membranes with Optimized Porous Structures. ACS Appl. Mater. Interfaces 2020, 12, 57373-57381.
44. Gong, F.; Li, H.; Zhou, Q.; Wang, M.; Wang, W.; Lv, Y.; Xiao, R.; Papavassiliou, D. V., Agricultural Waste-Derived Moisture-Absorber for All-Weather Atmospheric Water Collection and Electricity Generation. Nano Energy 2020, 74, 104922.
45. Zhao, Q.; Jiang, Y.; Duan, Z.; Yuan, Z.; Zha, J.; Wu, Z.; Huang, Q.; Zhou, Z.; Li, H.; He, F., A Nb2CTx/Sodium Alginate-Based Composite Film with Neuron-Like Network for Self-Powered Humidity Sensing. Chem. Eng. J. 2022, 438, 135588.
46. Ding, T.; Liu, K.; Li, J.; Xue, G.; Chen, Q.; Huang, L.; Hu, B.; Zhou, J., All‐Printed Porous Carbon Film for Electricity Generation from Evaporation‐Driven Water Flow. Adv. Funct. Mater. 2017, 27, 1700551.
47. Liu, K.; Ding, T.; Li, J.; Chen, Q.; Xue, G.; Yang, P.; Xu, M.; Wang, Z. L.; Zhou, J., Thermal–Electric Nanogenerator Based on the Electrokinetic Effect in Porous Carbon Film. Adv. Energy Mater. 2018, 8, 1702481.
48. Jin, H.; Yoon, S. G.; Lee, W. H.; Cho, Y. H.; Han, J.; Park, J.; Kim, Y. S., Identification of Water-Infiltration-Induced Electrical Energy Generation by Ionovoltaic Effect in Porous CuO Nanowire Films. Energy Environ. Sci. 2020, 13, 3432-3438.
49. Ma, Q.; He, Q.; Yin, P.; Cheng, H.; Cui, X.; Yun, Q.; Zhang, H., Rational Design of MOF‐Based Hybrid Nanomaterials for Directly Harvesting Electric Energy from Water Evaporation. Adv. Mater. 2020, 32, 2003720.
50. Jin, H.; Park, J.; Yoon, S. G.; Lee, W. H.; Cho, Y. H.; Han, J.; Yin, Z.; Kim, Y. S., Verification of Carrier Concentration‐Dependent Behavior in Water‐Infiltration‐Induced Electricity Generation by Ionovoltaic Effect. Small 2021, 17, 2103448.
51. Wu, M.; Peng, M.; Liang, Z.; Liu, Y.; Zhao, B.; Li, D.; Wang, Y.; Zhang, J.; Sun, Y.; Jiang, L., Printed Honeycomb-Structured Reduced Graphene Oxide Film for Efficient and Continuous Evaporation-Driven Electricity Generation from Salt Solution. ACS Appl. Mater. Interfaces 2021, 13, 26989-26997.
52. Sun, Z.; Feng, L.; Xiong, C.; He, X.; Wang, L.; Qin, X.; Yu, J., Electrospun Nanofiber Fabric: an Efficient, Breathable and Wearable Moist-Electric Generator. J. Mater. Chem. A 2021, 9, 7085-7093.
53. Zhao, X.; Xiong, Z.; Qiao, Z.; Bo, X.; Pang, D.; Sun, J.; Bian, J., Robust and Flexible Wearable Generator Driven by Water Evaporation for Sustainable and Portable Self-Power Supply. Chem. Eng. J. 2022, 434, 134671.
54. Tadmor, R.; Hernández-Zapata, E.; Chen, N.; Pincus, P.; Israelachvili, J. N., Debye Length and Double-Layer Forces in Polyelectrolyte Solutions. Macromolecules 2002, 35, 2380-2388.
55. Kohonen, M. M.; Karaman, M. E.; Pashley, R. M., Debye Length in Multivalent Electrolyte Solutions. Langmuir 2000, 16, 5749-5753.
56. Butt, H.-J., Measuring Electrostatic, van der Waals, and Hydration Forces in Electrolyte Solutions with an Atomic Force Microscope. Biophys. J. 1991, 60, 1438-1444.
57. Levine, S.; Neale, G. H., The Prediction of Electrokinetic Phenomena within Multiparticle Systems. I. Electrophoresis and Electroosmosis. J. Colloid Interface Sci. 1974, 47, 520-529.
58. Levine, S.; Neale, G.; Epstein, N., The Prediction of Electrokinetic Phenomena within Multiparticle Systems: II. Sedimentation Potential. J. Colloid Interface Sci. 1976, 57, 424-437.
59. Bazant, M. Z.; Squires, T. M., Induced-Charge Electrokinetic Phenomena: Theory and Microfluidic Applications. Phys. Rev. Lett. 2004, 92, 066101.
60. Delgado, Á. V.; González-Caballero, F.; Hunter, R.; Koopal, L.; Lyklema, J., Measurement and Interpretation of Electrokinetic Phenomena. J. Colloid Interface Sci. 2007, 309, 194-224.
61. Bernabé, Y., Streaming Potential in Heterogeneous Networks. J. Geophys. Res. Solid Earth 1998, 103, 20827-20841.
62. Furukawa, H.; Gandara, F.; Zhang, Y. B.; Jiang, J. C.; Queen, W. L.; Hudson, M. R.; Yaghi, O. M., Water Adsorption in Porous Metal-Organic Frameworks and Related Materials. J. Am. Chem. Soc. 2014, 136, 4369-4381.
63. Jiang, J. C.; Gandara, F.; Zhang, Y. B.; Na, K.; Yaghi, O. M.; Klemperer, W. G., Superacidity in Sulfated Metal-Organic Framework-808. J. Am. Chem. Soc. 2014, 136, 12844-12847.
64. Logan, M. W.; Langevin, S.; Xia, Z., Reversible Atmospheric Water Harvesting Using Metal-Organic Frameworks. Sci. Rep. 2020, 10, 1492.

無法下載圖示 全文公開日期 2027/07/21 (校內網路)
全文公開日期 2027/07/21 (校外網路)
全文公開日期 2027/07/21 (國家圖書館:臺灣博碩士論文系統)
QR CODE