簡易檢索 / 詳目顯示

研究生: 王仁君
Jen-Chun Wang
論文名稱: 氧化釕氧化銥奈米相化學氣相沉積之選擇性成長研究
Study on selective growth of ruthenium dioxide and iridium dioxide nanophases via chemical vapor deposition
指導教授: 蔡大翔
Dah-Shyang Tsai
口試委員: 周更生
Kan-Sen Chou
黃鶯聲
Huang-Ying Sheng
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 121
中文關鍵詞: 氧化釕氧化銥化學氣相沉積選擇性成長
外文關鍵詞: chemical vapor deposition, RuO2, IrO2, selective growth
相關次數: 點閱:491下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

摘 要
此論文利用兩年時間研究二氧化釕、二氧化銥奈米桿化學氣相沉積在Zn/Si、LiNbO3(100)、SA(012)、SA(100)基材表面的選區成長。這些一維奈米桿垂直陣列於LiNbO3(100)、SA(100)表面,傾斜陣列於SA(012)表面,無方向性的成長於Zn/Si基材。這兩種奈米桿都是沿金紅石結構的[001]方向生長,二氧化釕奈米桿表面含有多出計量比的氧,這些過多的氧可以用氬離子束清除。二氧化釕奈米桿選區成長在Zn/Si與LiNbO3(100)基材表面實現,當沉積溫度設定500C時,有最清晰的成長區非成長區定義,選區成長之物理緣由可追溯至成長非成長表面的成核能障差異,氧化矽玻璃表面的成核能障使其成為理想的非成長表面。若沉積溫度低於500C,成長區非成長區定義較不清晰,因為成長物種在表面的遷移不夠快,若沉積溫度高於500C,成長區非成長區定義清晰,但奈米桿成長受到抑制,奈米桿的抑制,我們相信與高價氧化物的脫附有關。
二氧化銥奈米桿的選區成長也可以實現,其最佳沉積溫度450C,選區的原理相信與二氧化釕奈米桿相同,用微影蝕刻的製程進行選區圖案定義,優於前面用於二氧化釕奈米桿圖案化的銅網遮罩方法。二氧化銥SA(012)表面初期成長顯示晶核的有趣分佈行列,這種晶核的分佈相信與表面缺陷有密切的關係。


ABSTRACT

The area-selective growth of RuO2 and IrO2 nanorods on Zn/Si, LiNbO3(100), SA(012), and SA(100) substrates has been investigated in the last two years. These one-dimensional rods are vertically aligned on LiNbO3(100) and SA(100), tiltedly aligned on SA(012), and randomly oriented on Zn/Si substrate. The growth direction is [001] of rutile crystal for both nanorods. The surface of RuO2 nanorods contains excess oxygen higher than the stoichiometric ratio. The excess oxygen can be removed using argon sputtering. The selective growth of RuO2 nanorods is demonstrated on the Zn/Si and LiNbO3(100) surfaces. And the definition of growth and nongrowth region is most clear when the growth temperature is 500C. The physics of area-selective growth can be traced back to the nucleation barrier on growth and nongrowth surfaces. The higher nucleation barrier on silica surface makes it an ideal nongrowth surface. When the growth temperature is lower than 500C, the definition is less clear since the mobility of growth species is reduced. When the growth temperature is higher than 500C, the definition is clear but the growth of nanorods is inhibited. The inhibition of 1D structure is believed to be related to the desorption of higher oxides.
The area-selective growth of IrO2 nanorods is also realized. The optimum growth temperature is 450C. The principle behind the growth and the nongrowth control is believed to be the same with that of RuO2 nanorods. The exposure-and-etching technique is utilized in patterning the IrO2 selective growth regions, and found to be superior to the patterning technique of copper grid that is used in patterning the RuO2 selective growth. The initial growth study on IrO2 reveals interesting distribution configuration of nuclei on SA(012) surface. The distribution of nuclei is believed to be intimately related to the surface defects.

目 錄 中文摘要………………………………………………………………I 英文摘要………………………………………………………………II 誌謝……………………………………………………………………IV 目錄…………………………………………………………………….V 圖目錄………………………………………………………………..VII 表目錄…………………………………………………… ………….XIII 第一章 緒論…………………………………………………………..1 1-1二氧化釕二氧化銥晶體結構……………………………………….1 1-2二氧化釕二氧化銥晶體之金屬電導特性………………………….4 1-3二氧化釕晶體穩定性及應用……………………………………….6 1-4 ㄧ維奈米結構材料……………………………………………...….9 1-5選區成長基本原理………………………………………..………..11 1-6 研究動機…………………………………………………………...15 第二章 實驗步驟及分析儀器…...………………………………..17 2-1 實驗藥品及規格…………………………………………………...17 2-2 實驗設備…………………………………………………………...20 2-2-1 金屬薄膜濺鍍系統.……...…………...……………………20 2-2-2 矽膜濺鍍系統…….……...…………...……………………22 2-2-3二氧化釕、二氧化銥化學氣相沉積設備…………………24 2-3 實驗步驟及條件………………………………....………………...27 2-3-1 潔淨處理………………………………...…………………29 2-3-2 金屬層之濺鍍……...………………………………………29 2-3-3 矽層之濺鍍………...………………………………………30 2-3-4 二氧化釕奈米桿沉積步驟………………………...….…...32 2-3-5 二氧化銥奈米桿沉積步驟………………………...….…...33 2-4 結構分析與性質量測儀器………………………………………...35 第三章 二氧化釕奈米相結構與選區成長……....……...……...38 3-1二氧化釕奈米桿合成結果與討論…..….………...………………38 3-1-1二氧化釕奈米桿成長條件與FESEM電鏡圖……………..39 3-1-2氧化釕奈米桿TEM電鏡圖分析.……………..……………41 3-1-3 X-ray繞射分析...……………………………………………43 3-1-4 XPS定性與定量分析成果.………...………………………45 3-2二氧化釕奈米桿選擇性成長...……………..……………………50 3-2-1二氧化釕初期成長與FESEM電鏡圖……………………...50 3-2-2二氧化釕奈米桿於鋅金屬基板之選擇性成長與FESEM電鏡圖…………………………………………………….…………..52 3-2-3蒸發器溫度對選擇性成長的影響………………………….59 3-2-4二氧化釕奈米桿於單晶基板之選擇性成長與FESEM電鏡圖....…………………………………………………………….…..66 第四章 二氧化銥奈米相選區成長………………....……...……...71 4-1二氧化銥奈米桿合成結果與討論…..….………...………………71 4-1-1二氧化銥奈米桿成長條件與FESEM電鏡圖及X-ray繞射分析……………………………………………………………………72 4-2二氧化銥奈米桿選區成長............…..….………...………………75 4-2-1二氧化銥奈米桿於鋅金屬基板之選擇性成長與FESEM電鏡圖……………………….……………………………….…………..75 4-2-2二氧化銥奈米桿於單晶基板之選擇性成長與FESEM電鏡圖........................................................................................................81 4-2-3二氧化銥初期成長與FESEM電鏡圖...................................87 第五章 結論…………………..……………………………………...92 參考文獻………………………………………………………………95

參考文獻

1. A. A. Bolzan, C. Fong, B. J. Kennedy, C. J. Howard, ”Structure Studies of Rutile-Type Metal Dioxides”, Acta Cryst., B53, pp.373-380 (1997).
2. JCPDS file, Iridium oxide 43-1019.
3. L. F. Mattheiss, ”Electronic structure of RuO2, OsO2, and IrO2”, Phys. Rev. B, Vol.13, pp.2433-2450 (1976).
4. 余樹楨, 晶體之結構與性質, 國立編譯館, 台北, 第280頁,民國七十八年。
5. W. D. Ryden and A. W. Lawson, C. C. Sartain ”Electronic transport properties of IrO2 and RuO2”, Phys. Rev. B, Vol.1, pp.1494-1500 (1970).
6. R. C. Weast (Ed.) Handbook and Chemistry and Physics, F146 (1989).
7. R. R. Daniels and G. Margaritiondo, “Electronic States of Rutile Dioxides”, Phys. Rev. B, Vol.29, pp.1813-1818 (1984).
8. M. Takeuchi, K. Miwada and H. Nagasaka, “Electrical Properties of Sputtered RuO2 Films”, Appl. Surf. Sci., Vol.11/12, pp.298-303(1982).
9. S. Y. Mar, J. S. Liang, C.Y. Sun, Y. S. Huang,"Grain boundary Scattering in Ruthenium dioxide thin film.", Thin Solid Films, Vol.238, pp.158-162 (1994).
10. S. Trasatti and W. E. O'Grady, “Properties and Application of RuO2-based electrodes”, Adv. Electrochem. Eng.,Vol.12, pp.177-183 (1981).
11. D. Galizzioli, F. Tandardini and S. Trasatti, “Ruthenium Dioxide:A New Electrode Material. II. Non-stoichiometry and Energtics off Electrode Reactions in Acid Solutions”, J. Appl. Electrochem., Vol.5, pp.203-214 (1975).
12. H. Beer, South Africa 66/2667; South Africa 67/6490; South Africa 68/0034; Belgium Patent No. 710551 (1968); British Patent No. 1147442 (1969).
13. D. Rochefort, P. Dabo, D. Guay, P. M. A. Sherwood, ”XPS investigations of thermally prepared RuO2 electrodes in reductive conditions”, Electro. Acta, Vol.48, pp.4245-4252 (2003).
14. M. Blouin and D. Guay, “Activation of Ruthenium Oxide, Iridium Oxide, and Mixed RuxIr1-x Oxide Electrodes During Cathodic Polarization and Hydrogen Evolution”, J. Electrochem. Soc., Vol.144, pp.573-581 (1997).
15. A. Cornell, and D. Simonsson, “Ruthenium Dioxide as Cathode Material for Hydrogen Evolution in Hydroxide and Chlorate Solutions”, J. Electrochem. Soc., Vol.140, pp.3123-3129 (1993).
16. T. C. Wen and C. C. Hsu, “ Hydrogen and Oxygen Evolutions on Ru-Ir Binary Oxides”, J. Electrochem. Soc., Vol.139, pp.2158-2164 (1992).
17. J. C. F. Boodts and S. Trasatti, “Hydrogen Evolution on Iridium Oxide Cathodes”, J. Appl. Electrochem., Vol.19, pp.255-262 (1989).
18. E. R. Kotz and S. Stucki, “Ruthenium Dioxide as a Hydrogen- Evolving Cathode”, J. Appl. Electrochem., Vol.17, pp.1190-1197 (1987).
19. A. Nidola and R. Schira, “Poisoning Mechanisms and Structural Analyses on Metallic Contaminated Cathode Catalysts in Chlor-Alkali Membrane Cell Technology”, J. Electrochem. Soc., Vol.133, pp.1653-1656 (1986).
20. S. L. Kuo and N. L. Wu, ”Composite Supercapacitor Containing Tin Oxide and Electroplated Ruthenium Oxide”, Electrochemical and Solid-State Lett., Vol.6, pp.A85-A87(2003).
21. K. Kalyanasundaram, E. Borgarello and M. Gratzel, ”Visible Light Induced Water Cleavage in CdS Dispersions Loaded with Pt and RuO2 Hole Scavenging by RuO2 “, Helvetica Chimica Acta, Vol.64, pp. 362-372(1981).
22. P. K. Khanna, S. K. Bhatnagar, and M. L. Sisodia, “Inter-diffusion Phenomena and Electrical Conduction in Thick-Film Segmented-resistor Structure”, J. Phys. D: Appl. Phys. Vol.21, pp. 1796-1800 (1988).
23. M. Prudenziati, B. Morten, F. Cilion, F. Cilloni and G. Ruffi, “Very High Strain Sensitivity in Thick-film Resistor: Real and False Super Gauge Factor“, Sensors and Actuators, Vol.19, pp.401-414 (1989).
24. S. Ferro and A. de Battisti, “Electrochemistry of the aqueous europium(III)/europium(II) redox couple at conductive diamond electrodes” J. Electroanalytical Chemistry, Vol.533, pp.177-180, (2002).
25. A. T. Kuhn, C. J. Mortimer, “Kinetic of Chlorine Evolution and Reduction on Titanium-Supported Metal Oxides Especially RuO2 and IrO2” J. Electrochem. Soc., Vol.120, pp.231-236 (1973).
26. T. Y. Kim, D. Kim, C. W. Chung, “Effects of Oxide Electrode on PbZrxTi1-xO3 Thin Films Prepared by Metallorganic Chemical Vapor Deposition”, Jpn. J. Appl. Phys., Vol.36, pp.6494-6499 (1997).
27. G. R. Bai, I. F. Tsu, A. Wang, C. M. Foster, C. E. Murray, V. P. Dravid, “In Situ Growth of Highly Oriented Pb(Zr0.5Ti0.5)O3 Thin Films by Low-Temperature Metal-Organic Chemical Vapor Deposition”, Appl. Phys. Lett., Vol.72, pp.1572-1574 (1998).
28. Q. X. Jia, W. A. Anderson, ” Stable RuO2 Thin Film Resistors” Materials Research Society Symposia Proceedings, pp.533-552 (1990).
29. J. Soudee, G. Chardin, Y. Giraudgeraud, P. Pari and M. Chapellier, “Properties of NTD Number-23 Ge Sensor and RuO2 Films as Thermal Sensors for Bolometers“, J. of Low Temp. Phy., Vol.93, pp. 319-326 (1993).
30. A. J. Mcevoy, and W. Gissler, “A Ruthernium Dioxide- Semiconductor Schottky Barrier Photovoltaic Device”, J. Appl. Phys., Vol.53, pp.1251-1252 (1982).
31. Q. X. Jia, Z. Q. Shi, K. L. Jiao and W. A. Anderson, “Reactively Sputtered RuO2 Thin Film Resistor With Near Zero Temperature Coefficient of Resistance”, Thin solid Films, Vol.196, pp.29-34 (1991).
32. E. Kolawa, F. C. T. So, E. T-S. Pan and M-A. Nicolt, ”Reactively Sputtered RuO2 Diffusion Barriers”, Appl. Phys. Lett., Vol.50, pp.854-855 (1987).
33. Joon-Hyung Ahn, Won-Youl Choi, Won-Jac Lee and Ho-Gi Kim, “ Annealing of RuO2 and Ru Bottom Electrodes and Its Effects on the Electrical Properties of (Ba,Sr)TiO3 Thin Films”, Jpn. J. Appl. Phys., Vol.37, pp.284-289 (1998).
34. S. Wodiunig, V. Patsis, C. Comninellis, “ Electrochemical Promotion of RuO2-Catalysts for the Gas Phase Combustion of C2H4”, Solid State Ionics, Vol.136-137, pp.813-817 (2000).
35. S. Wodiunig, C. Comninellis, “Electrochemical promotion of RuO2 catalysts for the gas phase combustion of C2H4”, J. Eur. Ceram. Soc., Vol.19, pp.931-934 (1999).
36. S. Wodiunig, F. Bokeloh, J. Nicole, and C. Comninellis, “ Electrochemical Promotion of RuO2 Catalyst Dispersed on an Yttria-Stabilized Zirconia Monolith”, Electrochem. Solid-State Lett., Vol.2, pp.281-283 (1999).
37. H. Over, “Ruthenium Dioxide, a Fascinating Material for Atomic Scale Surface Chemistry”, Appl. Phys. A, Vol.75, pp.37-44 (2002).
38. C. Y. Fan, J. Wang, K. Jacobi, G. Ertl, “The Oxidation of CO on RuO2(110) at Room Temperature”, J. Chem. Phys., Vol.114, pp.10058-10062 (2001).
39. S. Wendt, A. P. Seitsonen, H. Over, “Catalytic Activity of RuO2(1 1 0) in the Oxidation of CO”, Catalysis Today, Vol.85, pp.167-175 (2003).
40. S. Wendt, A. P. Seitsonen, Y. D. Kim, M. Knapp, H. Idriss, H. Over, ” Complex Redox Chemistry on the RuO2(1 1 0) surface: Experiment and theory”, Surf. Sci., Vol.505, pp.137-152 (2002).
41. H. Over, A. P. Seitsonen, E. Lundgren, M. Schmid, P. Varga, “Experimental and Simulated STM Images of Stoichiometric and Partially Reduced RuO2(1 1 0) Surfaces Including Adsorbates ”, Surf. Sci., Vol.515, pp.143-156 (2002).
42. A. P. Seitsonen, Y. D. Kim, M. Knapp, S. Wendt, and H. Over, “CO Adsorption on the Reduced RuO2(110) Surface: Energetics and Structure”, Phys. Rev. B, Vol.65, pp.035413-035421 (2001).
43. H. Over, A. P. Seitsonen, E. Lundgren, M. Wiklund, J. N. Andersen, “Spectroscopic Characterization of Catalytically Active Surface Sites of a Metallic Oxide”, Chem. Phys. Lett., Vol.342, pp.467-472 (2001).
44. H. Over, Y. D. Kim, A. P. Seitsonen, S. Wendt, E. Lundgren, M. Schmid, P. Varga, A. Morgante, G. Ertl, “Atomic-Scale Structure and Catalytic Reactivity of the RuO2(110) Surface”, Science, Vol.287, pp.1474-1476 (2000)
45. S. Iijima, “Helical of Microtubules of Graphitic Carbon”, Nature, Vol.354, pp.56-61 (1991).
46. C. M. Lieber, “One dimensional nanostructures: chemistry, physics, and applications, solid state communications”, Solid State Comm., Vol.107, pp.607-616 (1998).
47. L. C. Chen, S. W. Chang, C. Y. Wen, J. J. Wu, Y. F. Chen, Y. S. Huang, K. H. Chen, “Catalyst-Free and Controllable Growth of SiCxNy Nanorods”, J. Phys. Chem. Solids, Vol.62, PP.1567-1576 (2001).
48. Pan, Z. W., Z. R. Dai, and Z. L. Wang, “Nanobelts of Semiconducting Oxides”, Science, Vol.291, PP.1947-1949 (2001).
49. Yi, W., T. Jeong, S. Yu, J. Heo, C. Lee, J. Lee, W. Kim, J. B. Yoo, J. Kim, “Field-Emission Characteristics from Wide-Bandgap Materials-Coated Carbon Nanotubes”, Adv. Mater., Vol.14, No.20, PP.1464-1468 (2002).
50. Whitsitt, E. A. and A. R. Barron, “Silica Coated Single Walled Carbon Nanotubes”, Nano Lett., Vol.3, No.6, PP.775-778 (2003).
51. M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, P. Yang, “Room-temperature ultraviolet nanowire nanolasers”, Science, Vol.292, pp.1897 (2001).
52. M. H. Huang, Y. Wu, H. Feick, N. Tran, E. Weber, P. Yang, “Catalytic growth of Zinc Oxide nanowires by vapor transport”, Adv. Mater., Vol.13, pp.113-116 (2001).
53. J. J. Wu and S. C. Liu, “Catalyst-free growth and characterization of ZnO nanorods”, submit to J. Phys. Chem. B, Vol.106, pp.9546 (2002).
54. J. J. Wu, S. C. Liu, “Low-temperature growth of well-aligned ZnO nanorods by chemical vapor deposition”, Adv. Mater. Vol.14, pp.215-218 (2002).
55. P. Yang, C. M. Lieber, “Nanorod-superconductor composites: A pathyway to materials with high critical current densities”, Science, Vol.273, pp.1836-1840 (1996).
56. Y. Q. Zhu, W. B. Hu, W. K. Hsu, M. Terrones, N. Grobert, J. P. Hare, H. W. Kroto, D. R. M. Walton, H. Terrones, “SiC-SiOx heterojunctions in nanowires”, J. Mater. Chem., Vol.9, pp.3173-3178 (1999).
57. Z. G. Bai, D. P. Yu, H. Z. Zhang, Y. Ding, Y. P. Wang, X. Z. Gai, Q. L. Hang, G. C. Xiong, S. Q. Feng, “Nano-scale GeO2 wires synthesized by physical evaporation”, Chem. Phys. Lett., Vol.303, pp. 311-314 (1999).
58. Y. C. Choi, W. S. Kim, Y. S. Park, S. M. Lee, D. J. Bae, Y. H. Lee, G. S. Park, W. B. Choi, N. S. Lee, J. M. Kim, “Catalytic growth of β-Ga2O3 nanowires by Arc discharge”, Adv. Mater., Vol.12, pp.746-750 (2000).
59. Z. R. Dai, J. L. Gole, J. D. Stout, and Z. L. Wang, “Tin Oxide Nanowires, Nanoribbons, and Nanotubes”, J. Phys. Chem. B, Vol.106, No.6, pp.1274-1279 (2002).
60. Y. Liu, J. Dong, and M. Liu, “Well-Aligned Nano-Box-Beams of SnO2”, Adv. Mater., Vol.16, No.4, pp.353-356 (2004).
61. D. F. Zhang, L. D. Sun, J. L. Yin, and C. H. Yan, “Low-Temperature Fabrication of Highly Crystalline SnO2 Nanorods”, Adv. Mater., Vol.15, No.12, pp.1022-1025 (2003).
62. J. Hwang, B. Min, J. S. Lee, K. Keem, K. Cho, M. Y. Sung, M. S. Lee, and S. kim, “Al2O3 Nanotubes Fabrication by Wet Etching of ZnO/Al2O3 Core/Shell Nanofibers”, Adv. Mater., Vol.16, No.5, pp.422-425 (2004).
63. Z. Yuan, H. Huang, and S. Fan, “Regular Alumina Nanopillar Arrays”, Adv. Mater., Vol.14, No.4, pp.303-306 (2002).
64. B. C. Satishkumar, A. Govindaraj, M. Nath, C. N. R. Rao, “Synthesis of Metal Oxide Nanorods Using Carbon Nanotubes as Templates ”, J. Mater. Chem., Vol.10, pp.2115-2119 (2000).
65. J. V. Ryan, A. D. Berry, M. L. Anderson, J. M. Long, R. M. Stroud, V. M. Cepak, V. M. Browning, D. R. Rolison, C. I. Merzbacher, “Electronic Connection to the Interior of a Mesoporous Insulator With Nanowires of Crystalline RuO2”, Nature, Vol.406, pp.169-172 (2000).
66. W. L. Gladfelter, Chem. Mater. Vol.5, pp.1372 (1993).
67. J. R. Creighton, J. E. Parameter, Crit. Rev. Solid State Mat. Sci., Vol.18, pp.175 (1993).
68. J. P. Hirth, “Some comments on heterogeneous nucleation from the vapor phase”, J. Cryst. Growth, Vol.17, pp.63-69 (1972).
69. V. J. Halpern, J. Appl. Phys., Vol.18, pp.163 (1967).
70. B. Lewis, “Migration and capture processes in heterogeneous nucleation and growth”, Surf. Sci., Vol.21, pp.273-288, (1970).
71. B. Lewis, “Migration and capture processes in heterogeneous nucleation and growth : II. Comparison with experiment”, Surf. Sci., Vol.21, pp.289-306, (1970).
72. J. O. Carlsson, Crit. Rev. Solid State Mat. Sci., Vol.16, pp.161 (1991)
73. A. M. Morales, C. M. Lieber, “A laser ablation method for the synthesis of crystalline semiconductor nanowires”, Science, Vol.279, pp.208-211 (1998).
74. N. Wang, Y. F. Zheng, Y. H. Tang, C. S. Lee, S. T. Lee, “SiO2-enhanced synthesis of Si nanowires by laser ablation”, Appl. Phys. Lett. Vol.73, pp.3902-3904 (1998).
75. W. S. Shi, Y. F. Zheng, Y. H. Tang, C. S. Lee, S. T. Lee, “Oxide- assisted growth and optical characterization of gallium-arsenide nanowires”, Appl. Phys. Lett., Vol.78, pp.3304-3306 (2001).
76. J. Wang, M. S. Gudiksen, X. Duan, Y. Cui, C. M. Lieber, “Highly polarized photoluminescence and photodetection from single indium phosphide nanowires”, Science, Vol.293, pp.1455-1457 (2001).
77. H. M. Kim, D. S. Kim, Y. S. Park, D. Y. Kim, T. W. Kang, K. S. Chung, “Growth of GaN Nanorods By a Hydride Vapor Phase Epitaxy Method”, Adv. Mater., Vol.14, pp.991-993 (2002).
78. C. C. Chen, C. C. Yeh, “Large-Scale Catalytic Synthesis of Crystalline Gallium Nitride Nanowires”, Adv. Matter., Vol.12, pp.738-741 (2000).
79. P. M. Ajayan, “Nanotubes from Carbon”, Chem. Rev., Vol.99, pp. 1787-1799 (1999).
80. Y. Li, Y. Bando, D. Golberg, “Quasi-Aligned Single-Crystalline W18O49 Nanotubes and Nanowires”, Adv. Mater., Vol.15, pp.1294-1296 (2003).
81. H. J. Muhr, F. Krumeich, U. P. Schonholzer, F. Bieri, M. Niederberger, L. J. Gauckler, R. Nesper, “Vanadium Oxide Nanotubes - A New Flexible Vanadate Nanophase”, Adv. Mater., Vol.12, pp.231-234 (2000).
82. M. E. Spahr, P. Bitterli, R. Nesper, M. Muller, F. Krumeich, H. U. Nissen, “Redox-Active Nanotubes of Vanadium Oxide”, Angew. Chem. Int. Ed., Vol.37, pp.1263-1265 (1998).
83. T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, K. Niihara, “Formation of Titanium Oxide Nanotube”, Langmuir, Vol.14, pp.3160-3163 (1998).
84. T. Kasuga, M. Hiramutsu, A. Hoson, T. Sekino, K. Niihara, “Titania Nanotubes Prepared by Chemical Processing”, Adv. Mater., Vol.11, pp. 1307-1311 (1999).
85. Y. Li, Y. Bando, and D. Golberg, “Single-Crystalline In2O3 Nanotubes Filled with In”, Adv. Mater., Vol.15, No.7/8, pp.581-585 (2003)
86. J. Lao, J. Huang, D. Wang, and Z. Ren, “Self-Assembled In2O3 Nanocrystal Chains and Nanowire Networks”, Adv. Mater., Vol.16, No.1, pp.65-69 (2004).
87. R. S. Chen, Y. S. Huang, Y. M. Liang, D. S. Tsai, Y. Chi, and J. J. Kai, “Growth Control and Characterization of Vertically Aligned IrO2 Nanorods”, J. Mater. Chem., Vol.13, pp.2525-2529 (2003).
88. R. S. Chen, H. M. Chang, Y. S. Huang, D. S. Tsai, S. Chattopadhyay, K. H. Chen, “Growth and Characterization of Vertically Aligned Self-Assembled IrO2 Nanotubes”, J. Cryst. Growth, Vol.271, pp.105-112 (2004).
89. C. S. Hsieh, D. S. Tsai, R. S. Chen, Y. S. Huang, “Preparation of Ruthenium Dioxide Nanorods and Their Field Emission Characteristics”, Appl. Phys. Lett., Vol.85, No.17, pp.3860-3862 (2004).
90. Z. F. Ren, Z. P. Huang, D. Z. Wang, J. G. Wen, J. W. Xu, J. H. Wang, L. E. Calvet, J. Chen, J. F. Klemic, M. A. Reed, “Growth of a single freestanding multiwall carbon nanotube on each nanonickel dot”, Appl. Phys. Lett. Vol.75, No.8, pp.1086-1088 (1999).
91. A. G. Rinzler, J. H. Hafner, D. Nikolaev, S. G. Kim, D. Tomanek, P. Nordlander, D. T. Colbert, R. E. Smalley, “Unraveling Nanotubes: Field Emission from an Atomic Wire”, Science, Vol.269, pp.1550-1553 (1995).
92. W. A. de Heer, A. Chatelain, D. Ugarte, “A carbon nanotube field-emission electron source”, Science, Vol.270, pp.1179-1180 (1995).
93. W. B. Choi, D. S. Chung, J. H. Kang, H. Y. Kim, Y. W. Jin, I. T. Han, Y. H. Lee, J. E. Jung, N. S. Lee, G. S. Park, J. M. Kim, “Fully sealed, high-brightness carbon-nanotube field-emission display”, Appl. Phys. Lett. Vol.75, No.20, pp.3129-3131 (1999).
94. S. W. Kim, T. Kotani, M. Ueda and S. Fujita, Appl. Phys. Lett., Vol.83, No.17, “Selective formation of ZnO nanodots on nanopatterned substrates by metalorganic chemical vapor deposition”, pp.3593-3595 (2003).
95. Thermo VG Scientific:Avantage Software, West Sussex, England.
96. H. Over, A. P. Seitsonen, E. Lundgern, M. Smedh and J. N. Anderson, “On the origin of the Ru-3d5/2 satellite feature from RuO2(110)”, Surf. Sci., Vol.504, pp.L196-L200 (2002).
97. K. Reuter and M. Scheffler, “Surface core-level shifts at an oxygen-rich Ru surface: O/Ru(0001) vs. RuO2(110)”, Surf. Sci., Vol.490, pp.20-28 (2001).

QR CODE