簡易檢索 / 詳目顯示

研究生: 林敬鑫
Jing-Xin Lin
論文名稱: 以化學氣相沉積法成長二硒化鉬與石墨烯 應用於雙極性電晶體之研究
Growth of Molybdenum Diselenide and Graphene by Chemical Vapor Deposition for Bipolar Junction Transistor
指導教授: 李奎毅
Kuei-Yi Lee
趙良君
Liang -Chiun Chao
口試委員: 李奎毅
Kuei-Yi Lee
何清華
Ching-Hwa Ho
趙良君
Liang -Chiun Chao
陳瑞山
Ruei-San Chen
學位類別: 碩士
Master
系所名稱: 電資學院 - 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 74
中文關鍵詞: 化學氣相沉積法石墨烯二硒化鉬雙極性電晶體
外文關鍵詞: Chemical vapor deposition, Graphene, Molybdenum diselenide, Bipolar junction transistor
相關次數: 點閱:450下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,二維層狀材料因為其獨特的物理與化學特性而廣受關注,其中,過渡金屬硫化物已經在過去幾年中被探索,並且在光電領域中展現了優異的特性。在本實驗中,我們透過化學氣相沉積法分別於二氧化矽基板上成長n型之二硒化鉬,以及於銅箔上成長石墨烯,在常壓中成長的石墨烯表面會吸附來自大氣中的水氣與氧氣,使石墨烯打開能隙並使其變為p型,再透過蝕刻轉印的方式將石墨烯從銅箔上轉移至二硒化鉬上方,形成二硒化鉬/石墨烯/二硒化鉬之npn型電晶體結構,並且得到之最佳電流增益為4.65。在實驗過程中,我們發現我們合成的電晶體結構上出現了電流增益值先大後小的趨勢以及位於5 V的較大的電晶體啟動電壓,我們分別透過半波整流結果與電流擁擠效應對其進行了解釋。並且在我們的量測分析中,我們分別於拉曼量測與X光光電子能譜儀上檢測到二硒化鉬中含有二氧化鉬的成分,證明我們目前二硒化鉬的製程上仍有硒化不完全的問題,綜合討論可以發現,我們的電晶體結構仍有許多改進空間,諸如製程方面的優化、電晶體結構改變射極與集極兩端二硒化鉬的濃度差與基極寬度縮短等,都是有待改善的。


    Recently, two-dimensional layered materials have received considerable attention because of their unique physicochemical properties. Among them, transition metal dichalcogenides (TMDCs) have already been researched over the last few years and have exhibited excellent performance in both electronic and optics. In this study, molybdenum diselenide (MoSe2) and graphene were grown on the silicon dioxide (SiO2) substrate and copper foil by the chemical vapor deposition (CVD) method, respectively. It could be noticed that graphene would adsorb moisture and oxygen on its surface to open the band gap and made itself become a p-type material in our atmospheric synthesizing process. To realize the MoSe2/graphene/MoSe2 bipolar junction transistor (BJT) structure, graphene was transferred onto MoSe2 from the copper foil by the etching method. This BJT structure could demonstrate the current gain () which was 4.65. In this experiment, we used the result of current crowding effect to explain the tendency of the  value which increased at first and then decreased when the VBE voltage exceeded 8 V. On the other hand, we utilized the result of half-wave rectification to interpret the reason of turn on voltage of the transistor at 5 V. Moreover, we found that there were signals of molybdenum dioxide (MoO2) in our MoSe2 sample by the Raman spectroscopy and X-ray photoelectron spectroscopy (XPS) measurement. It could prove that we still have the problem in our fabricating process which was uncompletely selenizing. In summary, we found that there were still many problems needed to be improved in this BJT structure, such as changing the concentration of MoSe2, reducing the proportion of MoO2 in the CVD process of MoSe2.

    中文摘要 I ABSTRACT II 致謝 III 目錄 IV 圖目錄 VIII 表目錄 XIII 第一章 緒論 1 1.1研究背景與動機 1 1.2石墨烯 2 1.2.1背景 2 1.2.2石墨烯之結構 2 1.2.3石墨烯之電子能帶 5 1.2.4石墨烯之聲子能帶 6 1.2.5石墨烯之拉曼分析 7 1.2.6石墨烯製備方式 8 1.3過渡金屬硫化物 10 1.3.1背景 10 1.3.2二硒化鉬 12 1.3.3二硒化鉬之拉曼分析 14 1.3.4過渡金屬硫化物的製備方式 15 1.4二極體 16 1.4.1背景 16 1.4.2工作原理 16 1.5雙極性接面電晶體 19 1.5.1背景 19 1.5.2工作原理 20 第二章 實驗方式 21 2.1實驗流程圖 21 2.2樣品製備 22 2.2.1二硒化鉬薄膜成長 22 2.2.2石墨烯薄膜成長 25 2.2.3石墨烯薄膜轉印 27 2.2.4二極體與雙極性接面電晶體製備 28 2.3分析與量測儀器 29 2.3.1拉曼光譜儀 29 2.3.2掃描式電子顯微鏡與X光能量光譜儀 30 2.3.3 X光光電子能譜儀 31 2.3.4原子力顯微鏡 32 2.4電性量測 33 2.4.1電荷中性點量測 33 2.4.2 pn二極體量測 34 2.4.3理想因子計算 35 2.4.4半波整流量測 36 2.4.5雙極性接面電晶體量測 38 第三章 結果與討論 39 3.1拉曼光譜圖 39 3.1.1石墨烯之拉曼光譜 39 3.1.2二硒化鉬之拉曼光譜 41 3.2 X光光電子能譜儀 44 3.3掃描式電子顯微鏡 45 3.4 X光能量光譜儀 46 3.5原子力顯微鏡 48 3.6電荷中性點量測 48 3.6.1石墨烯之電荷中性點 48 3.6.2二硒化鉬之電荷中性點 49 3.7二極體特性曲線 50 3.7.1二硒化鉬/石墨烯之電壓-電流曲線與理想因子 50 3.8半波整流量測 51 3.8.1二硒化鉬/石墨烯半波整流 51 3.9雙極性接面電晶體特性曲線 52 3.9.1二硒化鉬/石墨烯/二硒化鉬電壓-電流曲線 52 3.10當今電晶體成果與電流增益比較 56 第四章 結論 57 參考文獻 58

    [1] G. Lee, S. J. Pearton, F. Ren, and J. Kim, “2D material‐based vertical double heterojunction bipolar transistors with high current amplification,” Adv. Electron. Mater., vol. 5, no. 3, pp. 1800745, 2019.
    [2] C.-Y. Lin, X. Zhu, S.-H. Tsai, S.-P. Tsai, S. Lei, Y. Shi, L.-J. Li, S.-J. Huang, W.-F. Wu, and W.-K. Yeh, “Atomic-monolayer two-dimensional lateral quasi-heterojunction bipolar transistors with resonant tunneling phenomenon,” ACS Nano, vol. 11, no. 11, pp. 11015-11023, 2017.
    [3] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science, vol. 306, no. 5696, pp. 666-669, 2004.
    [4] X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R. D. Piner, L. Colombo, and R. S. Ruoff, “Transfer of large-area graphene films for high-performance transparent conductive electrodes,” Nano Lett., vol. 9, no. 12, pp. 4359-4363, 2009.
    [5] Y. Wang, Z. Shi, Y. Huang, Y. Ma, C. Wang, M. Chen, and Y. Chen, “Supercapacitor devices based on graphene materials,” J. Phys. Chem. C, vol. 113, no. 30, pp. 13103-13107, 2009.
    [6] D. Zhang, X. Li, H. Li, S. Chen, Z. Sun, X. Yin, and S. Huang, “Graphene-based counter electrode for dye-sensitized solar cells,” Carbon, vol. 49, no. 15, pp. 5382-5388, 2011.
    [7] S. Basu and P. Bhattacharyya, “Recent developments on graphene and graphene oxide based solid state gas sensors,” Sens. Actuators B Chem., vol. 173, pp. 1-21, 2012.
    [8] Z. Sun and H. Chang, “Graphene and graphene-like two-dimensional materials in photodetection: mechanisms and methodology,” ACS Nano, vol. 8, no. 5, pp. 4133-4156, 2014.
    [9] J. C. Meyer, A. K. Geim, M. I. Katsnelson, K. S. Novoselov, T. J. Booth, and S. Roth, “The structure of suspended graphene sheets,” Nature, vol. 446, no. 7131, pp. 60-63, 2007.
    [10] J. Hass, W. De Heer, and E. Conrad, “The growth and morphology of epitaxial multilayer graphene,” J. Phys. Condensed Matter, vol. 20, no. 32, pp. 323202, 2008.
    [11] A. C. Neto, F. Guinea, N. M. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys., vol. 81, no. 1, pp. 109, 2009.

    [12] 呂俊頡, “以化學氣相沉積法控制單層與雙層石墨於圖紋化矽基板之成長,” 國立清華大學電子工程研究所碩士論文, 2008.
    [13] D. Abergel, V. Apalkov, J. Berashevich, K. Ziegler, and T. Chakraborty, “Properties of graphene: a theoretical perspective,” Adv. Phys., vol. 59, no. 4, pp. 261-482, 2010.
    [14] L. Malard, M. A. Pimenta, G. Dresselhaus, and M. Dresselhaus, “Raman spectroscopy in graphene,” Phys. Rep., vol. 473, no. 5-6, pp. 51-87, 2009.
    [15] R. Muñoz and C. Gómez‐Aleixandre, “Review of CVD synthesis of graphene,” Chem. Vap. Deposition, vol. 19, no. 10-11-12, pp. 297-322, 2013.
    [16] Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol., vol. 7, no. 11, pp. 699-712, 2012.
    [17] A. V. Kolobov and J. Tominaga, “Bulk TMDCs: Review of structure and properties,” Two-dimensional transition-metal dichalcogenides, pp. 29-77, 2016.
    [18] W. Jaegermann and H. Tributsch, “Interfacial properties of semiconducting transition metal chalcogenides,” Prog. Surf. Sci., vol. 29, no. 1-2, pp. 1-167, 1988.
    [19] Z.-L. Liu, L.-C. Cai, and X.-L. Zhang, “Novel high pressure structures and superconductivity of niobium disulfide,” J. Alloys Compd., vol. 610, pp. 472-477, 2014.
    [20] Z. Wang, Q. Su, G. Yin, J. Shi, H. Deng, J. Guan, M. Wu, Y. Zhou, H. Lou, and Y. Q. Fu, “Structure and electronic properties of transition metal dichalcogenide MX2 (M= Mo, W, Nb; X= S, Se) monolayers with grain boundaries,” Mater. Chem. Phys., vol. 147, no. 3, pp. 1068-1073, 2014.
    [21] M.-Y. Li, Y. Shi, C.-C. Cheng, L.-S. Lu, Y.-C. Lin, H.-L. Tang, M.-L. Tsai, C.-W. Chu, K.-H. Wei, and J.-H. He, “Epitaxial growth of a monolayer WSe2-MoS2 lateral pn junction with an atomically sharp interface,” Science, vol. 349, no. 6247, pp. 524-528, 2015.
    [22] D. Liu, D. Wang, X. Jing, X. Zhao, D. Xi, D. Dang, and L. Meng, “Continuous phase regulation of MoSe2 from 2H to 1T for the optimization of peroxidase-like catalysis,” J. Mater. Chem. B, vol. 8, no. 30, pp. 6451-6458, 2020.
    [23] S. Tongay, J. Zhou, C. Ataca, K. Lo, T. S. Matthews, J. Li, J. C. Grossman, and J. Wu, “Thermally driven crossover from indirect toward direct bandgap in 2D semiconductors: MoSe2 versus MoS2,” Nano Lett., vol. 12, no. 11, pp. 5576-5580, 2012.
    [24] S. Larentis, B. Fallahazad, and E. Tutuc, “Field-effect transistors and intrinsic mobility in ultra-thin MoSe2 layers,” Appl. Phys. Lett., vol. 101, no. 22, pp. 223104, 2012.

    [25] A. B. Patel, P. Chauhan, K. Patel, C. K. Sumesh, S. Narayan, K. D. Patel, G. K. Solanki, V. M. Pathak, P. K. Jha, and V. Patel, “Solution-processed uniform MoSe2–WSe2 heterojunction thin film on silicon substrate for superior and tunable photodetection,” ACS Sustain. Chem. Eng., vol. 8, no. 12, pp. 4809-4817, 2020.
    [26] C. Lee, H. Yan, L. E. Brus, T. F. Heinz, J. Hone, and S. Ryu, “Anomalous lattice vibrations of single-and few-layer MoS2,” ACS Nano, vol. 4, no. 5, pp. 2695-2700, 2010.
    [27] P. Tonndorf, R. Schmidt, P. Böttger, X. Zhang, J. Börner, A. Liebig, M. Albrecht, C. Kloc, O. Gordan, and D. R. Zahn, “Photoluminescence emission and Raman response of monolayer MoS2, MoSe2, and WSe2,” Opt. Express, vol. 21, no. 4, pp. 4908-4916, 2013.
    [28] A. Ubaldini, J. Jacimovic, N. Ubrig, and E. Giannini, “Chloride-driven chemical vapor transport method for crystal growth of transition metal dichalcogenides,” Cryst. Growth Des., vol. 13, no. 10, pp. 4453-4459, 2013.
    [29] R. Vaidya, M. Dave, S. Patel, S. Patel, and A. Jani, “Growth of molybdenum disulphide using iodine as transport material,” Pramana, vol. 63, no. 3, pp. 611-616, 2004.
    [30] A. Rai, R. Bhattacharya, J. Zabinski, and K. Miyoshi, “A comparison of the wear life of as-deposited and ion-irradiated WS2 coatings,” Surf. Coat. Technol., vol. 92, no. 1-2, pp. 120-128, 1997.
    [31] M. Habib, Z. Muhammad, R. Khan, C. Wu, Z. ur Rehman, Y. Zhou, H. Liu, and L. Song, “Ferromagnetism in CVT grown tungsten diselenide single crystals with nickel doping,” Nanotechnology, vol. 29, no. 11, pp. 115701, 2018.
    [32] M. Genut, L. Margulis, G. Hodes, and R. Tenne, “Preparation and microstructure WS2 thin films,” Thin Solid Films, vol. 217, no. 1-2, pp. 91-97, 1992.
    [33] A. Jäger-Waldau, M. C. Lux-Steiner, G. Jäger-Waldau, and E. Bucher, “WS2 thin films prepared by sulphurization,” Appl. Surf. Sci., vol. 70, pp. 731-736, 1993.
    [34] R. Ghasemi, L. Jamilpanah, E. Faridi, M. Hajiali, M. Shafei, S. Mohseni, and M. Tehranchi, “Electrical and magneto-optical characterization of Py/MoS2 bilayer: A facile growth of magnetic-metal/semiconductor heterostructure,” Mater. Lett., vol. 265, pp. 127454, 2020.
    [35] G. U. Özküçük, C. Odacı, E. Şahin, F. Ay, and N. K. Perkgöz, “Glass-assisted CVD growth of large-area MoS2, WS2 and MoSe2 monolayers on Si/SiO2 substrate,” Mater. Sci. Semicond. Process, vol. 105, pp. 104679, 2020.
    [36] Z. Zhang, X. Xu, J. Song, Q. Gao, S. Li, Q. Hu, X. Li, and Y. Wu, “High-performance transistors based on monolayer CVD MoS2 grown on molten glass,” Appl. Phys. Lett., vol. 113, no. 20, pp. 202103, 2018.
    [37] 鄧傑文, “高電壓垂直雙擴散場效電晶體元件(VDMOSFET) V型溝槽終端結構設計,” 私立東海大學電機工程學系碩士論文, 2015.
    [38] M. Al-Soeidat, D. D.-C. Lu, and J. Zhu, “An analog BJT-tuned maximum power point tracking technique for PV systems,” IEEE Trans. Circuits Syst. II Express Briefs, vol. 66, no. 4, pp. 637-641, 2018.
    [39] H. Xu, L. Xie, H. Zhang, and J. Zhang, “Effect of graphene Fermi level on the Raman scattering intensity of molecules on graphene,” ACS Nano, vol. 5, no. 7, pp. 5338-5344, 2011.
    [40] A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, and S. Roth, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett., vol. 97, no. 18, pp. 187401, 2006.
    [41] V. Singh, D. J. Late, A. Goyal, and S. Rath, “Raman spectroscopic investigations of the selenization of MoO3 in the chemical vapor deposition process to form two-dimensional MoSe2,” Appl. Surf. Sci., vol. 538, pp. 147946, 2021.
    [42] C. Jian, Q. Cai, W. Hong, J. Li, and W. Liu, “Edge‐riched MoSe2/MoO2 hybrid electrocatalyst for efficient hydrogen evolution reaction,” Small, vol. 14, no. 13, pp. 1703798, 2018.
    [43] Q. Hao, G. Cui, Y. Zhang, J. Li, and Z. Zhang, “Novel MoSe2/MoO2 heterostructure as an effective sulfur host for high-performance lithium/sulfur batteries,” Chem. Eng. J., vol. 381, pp. 122672, 2020.
    [44] J. Tong, Y. Xue, J. Wang, M. Wang, W. Chen, Q. Tian, and F. Yu, “Cu/Cu2O nanoparticle–decorated MoO2 nanoflowers as a highly efficient electrocatalyst for hydrogen evolution reaction,” Energy Technol., vol. 8, no. 7, pp. 1901392, 2020.
    [45] M. Acik and Y. J. Chabal, “A review on thermal exfoliation of graphene oxide,” J. Mater. Sci. Res., vol. 2, no. 1, pp. 101, 2013.
    [46] X. Zheng, Y. Wei, J. Liu, S. Wang, J. Shi, H. Yang, G. Peng, C. Deng, W. Luo, and Y. Zhao, “A homogeneous p–n junction diode by selective doping of few layer MoSe2 using ultraviolet ozone for high-performance photovoltaic devices,” Nanoscale, vol. 11, no. 28, pp. 13469-13476, 2019.
    [47] B. H. Moon, G. H. Han, H. Kim, H. Choi, J. J. Bae, J. Kim, Y. Jin, H. Y. Jeong, M.-K. Joo, and Y. H. Lee, “Junction-structure-dependent Schottky barrier inhomogeneity and device ideality of monolayer MoS2 field-effect transistors,” ACS Appl. Mater. Interfaces, vol. 9, no. 12, pp. 11240-11246, 2017.
    [48] K. Lew, S. Yoon, W. Loke, H. Tanoto, C. Dohrman, D. Isaacson, and E. Fitzgerald, “High gain AlGaAs∕GaAs heterojunction bipolar transistor fabricated on SiGe∕Si substrate,” J. Vac. Sci. Technol. B, vol. 25, no. 3, pp. 902-905, 2007.

    [49] Y.-C. Lee, Y. Zhang, H.-J. Kim, S. Choi, Z. Lochner, R. D. Dupuis, J.-H. Ryou, and S.-C. Shen, “High-current-gain direct-growth GaN/InGaN double heterojunction bipolar transistors,” IEEE Trans. Electron. Devices, vol. 57, no. 11, pp. 2964-2969, 2010.
    [50] A. Zhang, G. Dang, F. Ren, J. Han, A. Baca, R. Shul, H. Cho, C. Monier, X. Cao, and C. Abernathy, “Direct-current characteristics of pnp AlGaN/GaN heterojunction bipolar transistors,” Appl. Phys. Lett., vol. 76, no. 20, pp. 2943-2945, 2000.
    [51] Z. Lochner, H. Jin Kim, Y.-C. Lee, Y. Zhang, S. Choi, S.-C. Shen, P. Doug Yoder, J.-H. Ryou, and R. D. Dupuis, “npn-GaN/InxGa1−xN/GaN heterojunction bipolar transistor on free-standing GaN substrate,” Appl. Phys. Lett., vol. 99, no. 19, pp. 193501, 2011.
    [52] X. Yan, D. W. Zhang, C. Liu, W. Bao, S. Wang, S. Ding, G. Zheng, and P. Zhou, “High performance amplifier element realization via MoS2/GaTe heterostructures,” Adv. Sci., vol. 5, no. 4, pp. 1700830, 2018.
    [53] C. M. Torres Jr, Y.-W. Lan, C. Zeng, J.-H. Chen, X. Kou, A. Navabi, J. Tang, M. Montazeri, J. R. Adleman, and M. B. Lerner, “High-current gain two-dimensional MoS2-base hot-electron transistors,” Nano Lett., vol. 15, no. 12, pp. 7905-7912, 2015.

    無法下載圖示 全文公開日期 2026/08/27 (校內網路)
    全文公開日期 2026/08/27 (校外網路)
    全文公開日期 2026/08/27 (國家圖書館:臺灣博碩士論文系統)
    QR CODE