研究生: |
莊定為 Ting-Wei Zhuang |
---|---|
論文名稱: |
基於機器學習的新穎雷達定位技術 A NOVEL LEARNING-BASED LIDAR LOCALIZATION ALGORITHM |
指導教授: |
花凱龍
Kai-Lung Hua |
口試委員: |
花凱龍
Kai-Lung Hua 陳永耀 Yung-Yao Chen 楊朝龍 Chao-Lung Yang 陸敬互 Ching-Hu Lu 簡士哲 Shih-Che Chien |
學位類別: |
碩士 Master |
系所名稱: |
電資學院 - 資訊工程系 Department of Computer Science and Information Engineering |
論文出版年: | 2019 |
畢業學年度: | 107 |
語文別: | 英文 |
論文頁數: | 42 |
中文關鍵詞: | 雷達 、定位 、深度學習 、時序卷積神經網路 、深度可分離卷積 |
外文關鍵詞: | LiDAR, localization, deep learning, temporal convolutional neural network, separable depthwise convolution |
相關次數: | 點閱:455 下載:4 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來,無人自動駕駛車為全球多國重點發展領域,對於車輛安全性能的各項改善對交通事故的減少有一定的影響力。自動駕駛也已經發展迅速,這些系統需要定位車輛位置,無論白天或晚上都要準確地被定位。我們基於機器學習的新穎雷達定位技術在不需要視覺影像的輔助下,透過深度學習技術暨光學雷達所獲得的資訊來執行定位。我們首先在所收集的光學雷達點雲資料中,確認較有代表性之特徵關鍵點,然後於每個關鍵點,收集附近64個點雲的資訊之深度學習特徵資訊,接著透過三維卷積網路得到位移機率值,最後透過時間域資訊的整合得到最終結果,完成雷達定位。為了提高我們網絡的速度,我們利用深度可分離卷積結構減少在三維卷積時的運算速度、利用時間卷積網路代替傳統在時序資料中使用的遞迴神經網路已達成快速計算。我們的實驗證明,我們的網絡在基於深度學習的雷達定位中具有好的表現。
Self-driving systems need to be able to localize its position with high accuracy regardless of whether it is during the day or night. This means because of the sensitivity to the lighting conditions, we cannot rely on ordinary cameras to sense the surrounding environment. A solution to replace the images is to use light detection and ranging sensor (LiDAR) to generate a three-dimensional point cloud of each point representing the distance to the sensor. In this paper, we propose a novel method for LiDAR localization using the three-dimensional point clouds generated by the LiDAR, a pre-build map, and a predicted pose as inputs and achieves centimeter-level localization accuracy. Our approach first selects a certain number of the online point cloud as key points. We then extract learned features from convolutional neural networks in order to train these neural networks to localize lidar. Our proposed method achieved significant improvements in terms of speed over prior state-of-the-art methods.
[1] J. Levinson, M. Montemerlo, and S. Thrun, “Map-based precision vehicle localization in urban environments,” in Robotics: Science and Systems (RSS), 2007.
[2] J. Levinson and S. Thrun, “Robust vehicle localization in urban environments using probabilistic
maps,” 2010 IEEE International Conference on Robotics and Automation (ICRA), pp. 4372–4378,
2010.
[3] R. Kümmerle, D. Hähnel, D. Dolgov, S. Thrun, and W. Burgard, “Autonomous driving in a multilevel parking structure,” 2009 IEEE International Conference on Robotics and Automation (ICRA),
pp. 3395–3400, 2009.
[4] R. W. Wolcott and R. M. Eustice, “Fast lidar localization using multiresolution gaussian mixture
maps,” 2015 IEEE International Conference on Robotics and Automation (ICRA), pp. 2814–2821,
2015.
[5] R. W Wolcott and R. Eustice, “Robust lidar localization using multiresolution gaussian mixture
maps for autonomous driving,” The International Journal of Robotics Research (IJRR), vol. 36,
p. 027836491769656, 04 2017.
[6] H. Kim, B. Liu, C. Yuan Goh, S. Lee, and H. Myung, “Robust vehicle localization using entropyweighted particle filter-based data fusion of vertical and road intensity information for a large scale
urban area,” IEEE Robotics and Automation Letters (RA-L), vol. PP, pp. 1–1, 02 2017.
[7] R. Dubé, M. G. Gollub, H. Sommer, I. Gilitschenski, R. Siegwart, C. Cadena, and J. Nieto,
“Incremental-segment-based localization in 3-d point clouds,” IEEE Robotics and Automation Letters (RA-L), vol. 3, pp. 1832–1839, 2018.
[8] G. Wan, X. Yang, R. Cai, H. Li, H. J. Wang, and S. Song, “Robust and precise vehicle localization
based on multi-sensor fusion in diverse city scenes,” 2018 IEEE International Conference on Robotics
and Automation (ICRA), pp. 4670–4677, 2017.
[9] P. Besl and H. McKay, “A method for registration of 3-d shapes. ieee trans pattern anal mach intell,”
IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), vol. 14, pp. 239–256, 03
1992.
[10] W. Lu, Y. Zhou, G. Wan, S. Hou, and S. Song, “L3-net: Towards learning based lidar localization
for autonomous driving,” in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognitio (CVPR), pp. 6389–6398, 2019.
[11] M. Weinmann, B. Jutzi, S. Hinz, and C. Mallet, “Semantic point cloud interpretation based on optimal
neighborhoods, relevant features and efficient classifiers,” ISPRS Journal of Photogrammetry and
Remote Sensing, vol. 105, 02 2015.
31
[12] C. R. Qi, H. Su, K. Mo, and L. J. Guibas, “Pointnet: Deep learning on point sets for 3d classification
and segmentation,” 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pp. 77–85, 2016.
[13] S. Bai, J. Z. Kolter, and V. Koltun, “An empirical evaluation of generic convolutional and recurrent
networks for sequence modeling,” arXiv:1803.01271, 2018.
[14] P. Besl and H. McKay, “A method for registration of 3-d shapes. ieee trans pattern anal mach intell,”
IEEE Transactions on Pattern Analysis and Machine Intelligence(TPAMI), vol. 14, pp. 239–256, 03
1992.
[15] A. Segal, D. Hähnel, and S. Thrun, “Generalized-icp,” 06 2009.
[16] P. Biber and W. Straßer, “The normal distributions transform: A new approach to laser scan matching,”
vol. 3, pp. 2743 – 2748 vol.3, 11 2003.
[17] H. Yin, L. Tang, X. Ding, Y. Wang, and R. Xiong, “Locnet: Global localization in 3d point clouds for
mobile vehicles,” 2018 IEEE Intelligent Vehicles Symposium (IV), pp. 728–733, 2017.
[18] P. Wang, R. Yang, B. Cao, W. Xu, and Y. Lin, “Dels-3d: Deep localization and segmentation with a
3d semantic map,” 2018 IEEE/CVF Conference on Computer Vision and Pattern RecognitionCVPR,
pp. 5860–5869, 2018.
[19] A. Kendall, M. K. Grimes, and R. Cipolla, “Posenet: A convolutional network for real-time 6-dof
camera relocalization,” 2015 IEEE International Conference on Computer Vision (ICCV), pp. 2938–
2946, 2015.
[20] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. Andreetto, and H. Adam,
“Mobilenets: Efficient convolutional neural networks for mobile vision applications,” ArXiv, vol. abs/
1704.04861, 2017.
[21] J. Donahue, L. A. Hendricks, S. Guadarrama, M. Rohrbach, S. Venugopalan, K. Saenko, and T. Darrell,
“Long-term recurrent convolutional networks for visual recognition and description,” IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), vol. 39, pp. 677–691, 2014.
[22] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, “Vision meets robotics: The kitti dataset,” International
Journal of Robotics Research (IJRR), 2013.