簡易檢索 / 詳目顯示

研究生: 林辰穎
Chen-Ying Lin
論文名稱: 使用電容交換技術之12位元超低功耗寬溫度範圍類比數位轉換器
Ultra Low Power Wide Temperature Range 12-Bit Capacitor-Swapping Analog-to-Digital Converter
指導教授: 陳伯奇
Poki Chen
鍾勇輝
Yung-Hui Chung
口試委員: 陳信樹
Hsin-Shu Chen
盧志文
Chih-Wen Lu
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 91
中文關鍵詞: 低功耗電容交換技術寬溫度範圍類比至數位轉換器
外文關鍵詞: Low Power, Capacitor-Swapping, Wide Temperature Range, Analog-to-Digital Converter
相關次數: 點閱:220下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文探討十二位元之類比數位轉換器 (ADC) 的設計與實現,主要以連續漸進式架構為基礎,為了滿足十二位元的線性度要求,在數位類比轉換器 (Digital-to-Analog Converter, DAC) 中,使用電容交換技術,以得到更好的線性度,另外也包含1個冗餘位元用以補償 DAC 穩定誤差 (Settling Error),由於得應用在大範圍 (-30°C至120°C) 的溫度感測,漏電是主要的設計難題,因此在靴帶式取樣開關、時脈幫浦…等電路,都需要特殊設計以解決此問題。

本晶片以 TSMC 0.18μm 1P6M CMOS 製程來實現,含 PADs 之晶片面積為 1.09mm2。 其中核心電路面積約為 0.186??2 (420?? × 443??)。SAR ADC之解析度為 12 位元, 取樣率為 1k-S/s,電壓為 0.5V。在常溫之下的佈局後模擬之功耗為 6.64nW,加入雜訊之有效位元為 11.32-bit, FOM 為 2.59 fJ/c-s。


The thesis is mainly aimed at 12-bit successive approximation register(SAR) analog-to-digital converters (ADCs) design. To achieve the 12-bit linearity requirement, the capacitor-swapping switching technique is applied in the DAC that contains 1 redundant bit to compensate for the DAC settling error. Since the ADC will be used in wide-range (-30°C to 120°C) temperature sensing, leakage becomes the main design challenge and the bootstrap sampling switch, clock pump… etc. are all applied to conquer this problem.
This ADC is fabricated in a TSMC 0.18μm 1P6M CMOS process with a chip area of 1.04mm2 including I/O PADs. The core circuit area is around 0.204??2 (461.28?? × 442.66??). The sampling rate is 1k-S/s and the supply voltage is 0.5V. The power consumption of the post-layout simulation at room temperature is 6.64nW and the effective number of bits after voting mode enabled is 11.32-bit and the corresponding FOM is 2.59 fJ/c-s.

摘 要 Abstract 誌 謝 目 錄 圖目錄 表目錄 第1章 緒論 1-1 研究背景與動機 1-2 論文架構 第2章 類比至數位轉換器之基本原理 2-1 類比至數位轉換器效能之衡量標準 2-2 類比至數位轉換器選擇 2-3 基本的循序漸進式類比轉換器原理 第3章 類比至數位轉換器之電路設計與實現 3-1 架構 3-2 取樣電路 3-2-1 單一電晶體開關 3-2-2 互補式開關 3-2-3 靴帶式取樣開關 3-2-4 兩倍電壓靴帶式取樣開關 3-2-5 保持模式漏電流 3-2-6 漏電流改善前後之頻譜模擬 3-3 比較器 3-3-1 動態雙級比較器 3-4 數位類比轉換器 3-4-1 電容交換技術 3-4-2 數位類比轉換器電容陣列設計 3-4-3 數位類比轉換器切換方式 3-4-4 電壓幫浦式時脈驅動電路 3-5 邏輯控制電路 3-5-1 非同步控制邏輯電路 3-5-2 連續漸進式控制邏輯電路 3-5-3 電容交換控制邏輯電路 3-5-4 CKC迴路與DAC迴路之關係 3-6 參考電壓緩衝器 3-6-1 傳統式參考電壓緩衝器 3-7 佈局考量 3-7-1 電容陣列佈局 第4章 電路模擬與量測 4-1 佈局前模擬 (Pre-Simulation) 4-2 佈局後模擬 (Post-Simulation) 4-3 前後模擬比較 4-4 總功耗 4-5 量測規劃 4-5-1 量測方法 4-6 晶片效能比較 第5章 結論與未來展望 5-1 結論 5-2 未來展望 參考文獻

[1] Y. Ji, C. Jeon, H. Son, B. Kim, H. Park and J. Sim, "5.8 A 9.3nW all-in-onebandgap voltage and current reference circuit," 2017 IEEE InternationalSolid-State Circuits Conference (ISSCC), San Francisco, CA, 2017, pp. 100-101.
[2] J. M. Lee et al., "5.7 A 29nW bandgap reference circuit," 2015 IEEEInternational Solid-State Circuits Conference - (ISSCC) Digest of TechnicalPapers, San Francisco, CA, 2015, pp. 1-3.
[3] R. Van de Plassche, CMOS Integrated Analog-to-Digital and Digital-to-AnalogConverters. Kluwer Academic Publishers, second ed., 2003.
[4] B. Razavi, Design of Analog CMOS Integrated Circuits, McGraw-Hill, seconded., 2001.
[5] Y. Zhu et al., "A 10-bit 100-MS/s Reference-Free SAR ADC in 90 nm CMOS," in IEEE Journal of Solid-State Circuits, vol. 45, no. 6, pp. 1111-1121, June 2010.
[6] B. Razavi, Principles of Data Conversion System Design. John Willy and Sons,Inc., first ed., 1995.
[7] M. Dessouky and A. Kaiser, "Input switch configuration suitable for rail-to-rail operation of switched op amp circuits," in Electronics Letters, vol. 35, no. 1, pp.8-10, 7 Jan. 1999.
[8] C. C. Enz, F. Krummenacher, E. A. Vittoz, "An analytical MOS transistor model valid in all regions of operation and dedicated to low-voltage and low-current applications", Analog Integrat. Circuits Signal Process., vol. 8, pp. 83-114, 1995.
[9] J. Lin and C. Hsieh, "A 0.3 V 10-bit SAR ADC With First 2-bit Guess in 90-nm CMOS," in IEEE Transactions on Circuits and Systems I: Regular Papers, vol.64, no. 3, pp. 562-572, March 2017.74
[10] S. He and C. E. Saavedra, "Design of a Low-Voltage and Low-Distortion Mixer Through Volterra-Series Analysis," in IEEE Transactions on Microwave Theory and Techniques, vol. 61, no. 1, pp. 177-184, Jan. 2013.
[11] P. E. Allen and D. R. Holberg, CMOS Analog Circuit Design, Oxford UniversityPress, second ed. 2002.
[12] A. Nikoozadeh and B. Murmann, "An Analysis of Latch Comparator Offset Due to Load Capacitor Mismatch," in IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 53, no. 12, pp. 1398-1402, Dec. 2006.
[13] M. Miyahara, Y. Asada, D. Paik, and A. Matsuzawa, “A low-noise selfcalibrating dynamic comparator for high-speed ADCs,” in Proc. IEEE Asian Solid-State Circuits Conf. (A-SSCC), Nov. 2008, pp. 269–272.
[14] C. Liu, S. Chang, G. Huang and Y. Lin, "A 10-bit 50-MS/s SAR ADC With a
Monotonic Capacitor Switching Procedure," in IEEE Journal of Solid-State
Circuits, vol. 45, no. 4, pp. 731-740, April 2010.
[15] D. Zhang, A. Bhide and A. Alvandpour, "A 53-nW 9.1-ENOB 1-kS/s SAR ADCin 0.13- μm CMOS for Medical Implant Devices," in IEEE Journal ofSolid-State Circuits, vol. 47, no. 7, pp. 1585-1593, July 2012.
[16] Z. Zhu and Y. Liang, "A 0.6-V 38-nW 9.4-ENOB 20-kS/s SAR ADC in 0.18-μm CMOS for Medical Implant Devices," in IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 62, no. 9, pp. 2167-2176, Sept. 2015.
[17] J. Yuan and C. Svensson, “High-speed CMOS circuit technique,” IEEE J.Solid-State Circuits, vol. 24, no. 1, Feb. 1989, pp. 62-70.
[18] P. Harpe, H. Gao, R. van Dommele, E. Cantatore and A. van Roermund, "21.2 A 3nW signal-acquisition IC integrating an amplifier with 2.1 NEF and a 75 1.5fJ/conv-step ADC," 2015 IEEE International Solid-State Circuits Conference - (ISSCC) Digest of Technical Papers, San Francisco, CA, 2015, pp. 1-3.
[19] W. Mao, Y. Li, C. Heng and Y. Lian, "A Low Power 12-bit 1-kS/s SAR ADC for Biomedical Signal Processing," in IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 66, no. 2, pp. 477-488, Feb. 2019.
[20] X. Zou, X. Xu, L. Yao and Y. Lian, "A 1-V 450-nW Fully Integrated Programmable Biomedical Sensor Interface Chip," in IEEE Journal of Solid-State Circuits, vol. 44, no. 4, pp. 1067-1077, April 2009.
[21] C. C. Liu, S. J. Chang, G. Y. Huang, Y. Z. Lin, C. M. Huang, C. H. Huang, L.Bu, and C. C. Tsai, “A 10 b 100 MS/s 1.13 mW SAR ADC with binary-scalederror compensation,” in IEEE ISSCC Dig. Tech. Papers, Feb. 2010, pp.386–387.
[22] S. W. Chen and R. W. Brodersen, “A 6-bit 600-MS/s 5.3-mW Asynchronous ADC in 0.13-μm CMOS,” IEEE J. Solid-State Circuits, vol. 41, no. 12, pp. 2669–2680, 2006.
[23] Y.-H. Chung, M.-H. Wu, and H.-S. Li, “A 12-bit 8.47-fJ/conversion-step capacitor-swapping SAR ADC in 110-nm CMOS,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 62, no. 1, pp. 10–18, Jan. 2015.
[24] S.-W. Chen et al, “A 6-bit 600-MS/s 5.3-mW Asynchronous ADC in 0.13-μmCMOS,” IEEE Journal of Solid-State Circuits, vol. 41, no. 12 , Nov. 206.
[25] Y.-H. Chung, C.-W. Yen, P.-K. Tsai, and B.-W. Chen, “A 12-bit 40-MS/s SAR ADC With a Fast-Binary-Window DAC Switching Scheme, ”IEEE Transactions on Very Large Scale Integration (VLSI) Systems, pp. 1-10, July 2018.

無法下載圖示 全文公開日期 2027/02/08 (校內網路)
全文公開日期 2027/02/08 (校外網路)
全文公開日期 2027/02/08 (國家圖書館:臺灣博碩士論文系統)
QR CODE