簡易檢索 / 詳目顯示

研究生: 周清和
CHING-HO CHOU
論文名稱: 高效能預熱起動並聯諧振螢光燈安定器
Programmed-Rapid-Start Parallel-Resonant Fluorescent Lamp Ballasts
指導教授: 蕭弘清
Horng-Ching Hsiao
口試委員: 胡能忠
Neng-Chung Hu
郭政謙
Cheng-Chien Kuo
蕭鈞毓
Chun-Yu Hsiao
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 95
中文關鍵詞: 安定器流明效率高效能預熱起動並聯諧振
外文關鍵詞: Ballast Luminous Efficiency, Programmed Rapid Start, Parallel Resonant
相關次數: 點閱:346下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文主旨為提出一新型四支T8 32 W螢光燈管用高效能預熱起動並聯諧振螢光燈安定器之設計。電路架構是採用兩級式電路設計:前級是升壓型功率因數修正電路;後級是半橋式電流源並聯諧振電路。目前的預熱起動型安定器也是採用半橋式電流源並聯諧振電路,但是燈管點亮後,預熱能量還持續在燈絲上加熱,導致安定器流明效率偏低。本研究在半橋式電流源並聯諧振電路的基礎架構下,加入一獨立半橋式預熱電路做燈絲加熱功能,在預熱期間提供給燈絲能量,燈管點亮前,會關閉預熱電路並移除燈絲上的能量,進而提高安定器流明效率。依據實驗結果來評比非預熱起動型安定器、預熱起動型安定器和高效能預熱起動型安定器的安定器流明效率之優劣。新型四支T8 32 W螢光燈管用高效能預熱起動並聯諧振螢光燈安定器符合2014年美國能源局的安定器能效法令,可以取代現有預熱起動型安定器的照明應用。


The objective of this thesis is to design novel programmed rapid start parallel resonant fluorescent lamp ballast for 4 by 32W T8 fluorescent lamps. The topology is 2-stage circuit design: the front end stage is a boost type power factor correction circuit; and the back end stage is a half bridge current source parallel resonant circuit. Now the rapid start ballast is using the same topology, but the ballast luminous efficiency is lower since the heating energy is continuously supplying after the lamps struck. In this study, the circuit is based on the same topology and added an independent type half bridge preheat circuit to supply the heating function with filaments. The circuit provided a heating energy to the filaments during the preheat time. And it will be shutdown and cut-off the heating energy before the lamps struck. The ballast luminous efficiency was improved finally. The experimental result shows 3 kinds of prototype performance. And compare the parameter of ballast luminous efficiency for all instant start ballast, rapid start ballast and programmed rapid start ballast. The new programmed rapid start parallel resonant fluorescent lamp ballast is compliant with 2014 Department of Energy ballast regulation. It could be able to replace all existing rapid start ballasts in lighting application.

中文摘要 I 英文摘要 II 誌謝 III 目錄 IV 圖表索引 VI 第一章 緒論 1 1.1 研究背景 1 1.2 研究動機與目的 1 1.3 文獻回顧 3 1.4 研究流程與方法 4 1.5 章節概述 4 第二章 螢光燈安定器性能規範要求 6 2.1 安定器性能標準 6 2.2 安定器的標示 6 2.3 安定器的引出線色彩準則 7 2.4 非預熱起動型安定器的起動性能 9 2.5 預熱起動型安定器的起動性能 10 2.6 高效能預熱起動型安定器的起動性能 11 2.7 安定器的性能參數 12 2.8 結語 19 第三章 螢光燈安定器效率規範與認證 20 3.1 美國能源局的安定器能效規章 20 3.2 安定器流明效率的定義 21 3.3 安定器的測量方式 22 3.4 安定器的測試認證 25 3.5 美國電氣製造商協會的安定器效率規範 26 3.6 安定器測量的實驗室認證要求 28 3.7 結語 28 第四章 新型高效能預熱起動型並聯諧振安定器設計架構 29 4.1 安定器電路架構 29 4.2 功率因數修正電路 30 4.3 半橋式電流源並聯諧振電路 35 4.4 獨立半橋式陰極預熱電路 47 4.5 起動時序控制電路 52 4.6 結語 54 第五章 螢光燈安定器設計案例與設計考量 55 5.1 安定器規格 55 5.2 一般商用非預熱起動型安定器設計案例 56 5.3 一般商用預熱起動型安定器設計案例 64 5.4 新型高效能預熱起動型安定器設計案例 68 5.5 安定器設計考量 70 5.6 結語 71 第六章 螢光燈安定器實作驗證與性能評比 72 6.1 前級電路的測量 72 6.2 後級電路的測量 77 6.3 系統整合的測量 83 6.4 安定器性能評比與討論 88 6.5 結語 89 第七章 結論與未來展望 90 7.1 結論 90 7.2 未來展望 90 參考文獻 92

[1] Navigant Consulting, Inc. 2014. “Energy Savings Forecast of Solid-State Lighting in General Illumination Applications,” US Department of Energy, Aug. 2014.
[2] US Department of Energy. 2011. “Rules and Regulations 10 CFR Part 430, Energy Conservation Program: Energy Conservation Standards for Fluorescent Lamp Ballasts,” Nov. 2011.
[3] Navigant Consulting, Inc., and Pacific Northwest National Laboratory. 2011. “Final Rule Technical Support Document Energy Conservation Program for Consumer Products and Certain Commercial and Industrial Equipment: Fluorescent Lamp Ballasts,” US Department of Energy, Nov. 2011.
[4] American National Standards Institude. 2011. “ANSI ANSLG C82.11-2011, High-Frequency Fluorescent Lamp Ballasts,” Sep. 2011.
[5] O’Rourke, C., A. Taylor, M. J. Frank, R. Cobello, S. Mahar, and J. Cross. 2000. “Electronic Ballast: Non-dimming electronic ballast s for 4-foot and 8-foot fluorescent lamp,” National Lighting Product Information Program Specifier Reports, New York, vol. 8, no. 1, pp. 1-32, May 2000.
[6] Moo, C. S., K. H. Lee and H. C. Yen. 2009. “Profiling Starting Transient of Fluorescent Lamp with High-Frequency Electronic Ballast,” IEEE Transactions on Plasma Science, vol. 37, no. 12, pp. 2353-2358, Dec. 2009.
[7] Ji, Y., and R. Davis. 1997. “Starting Performance of High-Frequency Electronic Ballasts for Four-Foot Fluorescent Lamps,” IEEE Transactions on Industry Applications, vol. 33, no. 1, pp. 234-238, Feb. 1997.
[8] Ji, Y., R. Davis, C. O’Rourke and E. W. M. Chui. 1999. “Compatibility Testing of Fluorescent Lamp and Ballast Systems,” IEEE Transactions on Industry Applications, vol. 35, no. 6, pp. 1271-1276, Nov./Dec. 1999.
[9] GE Lighting. 2013. “F32T8 4’ T8 Starcoat Ecolux SXL Super Long Life Lamps Spec Sheet 64403,” Aug. 2013.
[10] Baxandall, P. J. 1960. “Transistor Sine-Wave LC Oscillators, Some General Considerations and New Developments,” Session on Applications: Linear Amplification and Oscillators, The Institution of Electrical Engineers, paper no. 2978 E, Feb. 1960.
[11] Steigerwald, R. 1984. “High-Frequency Resonant Transistor DC-DC Converters,” IEEE Transactions on Inductrial Electronics, vol. IE-31, no. 2, pp. 181-191, May 1984.
[12] Wu, T. F., T. H. Yu and H. M. Huang. 1994. “Complete Analysis and Performance-Characteristic Compromise for Self-Excited Half-Bridge Parallel Resonant Electronic Ballasts,” in Proceedings Power Electronics Specialists Conference, Taipei, vol. 1, pp. 124-131, Jun. 1994.
[13] Yu, T. H., L. M. Wu and T. F. Wu. 1994. “Comparisons Among Self-Excited Parallel Resonant, Series Resonant and Current-Fed Push-Pull Electronic Ballasts,” in Proceedings Applied Power Electronic Conference and Exposition, Orlando, FL, vol. 1, pp. 421-426, Feb. 1994.
[14] Kazimierczuk, M. K., and R. C. Cravens II. 1996. “Current-Source Parallel Resonant DC-AC Inverter with Transformer,” IEEE Transactions on Power Electronics, vol. 11, no. 2, pp. 275-284, Mar. 1996.
[15] Hesterman, B., and T. M. Poehlman. 1999. “A Novel Parallel-Resonant Programmed Start Electronic Ballast,” in Proceedings Industry Applications Conference, Phoenix, AZ, vol. 1, pp. 249-255, Oct. 1999.
[16] Chang, C., and G. Bruning. 2001. “Voltage-Fed Half-Bridge Resonant Converter for Multiple Lamp Independent Operation,” in Proceedings Industry Applications Conference, Chicago, IL, vol. 1, pp. 218-222, Sep./Oct. 2001.
[17] Yu, Q., and J. Parisella. 2007. “Frequency Diognostic Universal Fault Protection for Current Fed Parallel Resonant Electronic Ballast,” IEEE Transactions on Power Elecronics, vol. 22, no. 3, pp. 881-888, May 2007.
[18] Kazimierczuk, M. K., and D. Czarkowski. 2011. Resonant Power Converters, Second Edition, pp. 290-310, New Jersey, Wiley.
[19] Hammer, E. E., and D. Haas. 1997. “Photocell Enhanced Technique for Measuring Starting Electrode Temperatures of Fluorescent Lamps” in Proceeding Industry Applications Conference, New Orleans, LA, vol. 3, pp. 2313-2333, Oct. 1997.
[20] Dorleijn, J. W. F., and L. H. Goud. 2002. “Standardisation of the Static Resistances of Fluorescent Lamp Cathodes and New Data for Preheating,” in Proceedings Industry Applications Conference, Pittsburgh, PA, vol. 1, pp. 665-672, Oct. 2002.
[21] Zhang, W., J. Ying, R, Liang and S. Zhang. 2012. “Predictable Characteristics of the Fluorescent Lamp Electrodes with the Constant RMS Voltage Heating Method During the Preheating Phase,” IEEE Transactions on Power Electronics, vol. 27, no. 5, pp. 2623-2632, May 2012.
[22] Gules, R., W. M. dos Santos, E. F. R. Romaneli, C. Q. Andrea and R. C. Annunziato. 2012. “An Auxiliary Self-Oscillating Preheating System for Self-Oscillating Fluorescent Lamp Electronic Ballasts,” IEEE Transactions on Industrial Electonics, vol. 59, no. 4, pp. 1859-1868, Apr. 2012.

[23] Xiong, W., and A. V. Stankovic. 2012. “A Universal Programmed Start Dimming Ballast Platform,” in Proceedings Industry Applications Society Annual Meeting, Las Vegas, LV, pp. 1-8, Oct. 2012.
[24] American National Standards Institude. 2002. “ANSI ANSLG C82.77-2002, Harmonic Emission Limits – Related Power Quality Requirement for Lighting Equipment,” Jan. 2002.
[25] American National Standards Institude. 1991. “ANSI ANSLG C62.41-1991, IEEE Recommended Practice on Surge Voltages in Low-Voltage AC Power Circuits,” Sep. 1991.
[26] Underwriters Laboratories Inc. 2001. “UL 935, Fluorescent-Lamp Ballasts, Tenth Edition,” May 2001.
[27] Hsieh, G. C. and C. H. Lin. 2001. “Harmonized Strategy for Breaking the Striations in the Fluorescent Lamp,” IEEE Transacions on Industrial Electonics, vol. 45, no. 2, pp. 352-366, Api. 2001.
[28] Chou, C. H., and T. Y. Ou. 2013. Electronic Ballast. US Patent 8,587,207.
[29] NXP Semiconductors. 2011. “UBA2211 Half-Bridge Power IC Family for CFL Lamps Product Data Sheet,” Aug. 2011.
[30] ST Microelectronics. 2005. “L6562 Transition-Mode PFC Controller Data Sheet,” Nov. 2005.
[31] ST Mrcorelectronics. 2003. “L6561, Enhanced Transition Mode Power Factor Correction Application Note, AN-966,” Mar. 2003.
[32] Chou, C. H., D. Chen, T. K. Yang and Z. A. Jiang. 2007. Method and Device for Wiring Connection. US Patent 7,182,655.

QR CODE