簡易檢索 / 詳目顯示

研究生: 李冠青
Kuan-ching Li
論文名稱: 特定諧波規劃與消除之三相大電流產生器研製
Design and Implementation of Three-Phase High Current Generator Using Selective Harmonic Programming and Elimination
指導教授: 楊宗銘
Chung-Ming Young
口試委員: 陳良瑞
Liang-Rui Chen
羅有綱
Yu-Kang Lo
林志銘
Chih-Ming Lin
彭榮芳
Jung-Fang Perng
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 120
中文關鍵詞: 特定諧波消除電流源變流器並聯諧振三相V接總諧波失真
外文關鍵詞: selective harmonic elimination, current source inverter, parallel resonant, three-phase v-connected, total harmonic distrotion.
相關次數: 點閱:405下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文主要在利用特定諧波消除脈波寬度調變來控制電流源變流器,最後透過並聯諧振及變壓器三相V接線輸出,其主要目的為獲得一個可調整的三相大電流源提供電力設備試驗用之所需。運用脈波寬度調變的規劃得到特定角度來作為切換開關的觸發訊號,在系統中經由些微頻率的變動找出在這固定頻率範圍內最小的總諧波失真,以及回授控制輸出電流大小。以上的過程透過MATLAB建立完整架構並模擬分析,再利用數位訊號處理器TMS320F2812為控制器來提供切換開關觸發訊號以及處理回授控制。經由模擬與實作的相互驗證,最後證明本文所提之方法確實具有可行性。


    The research uses selective harmonic elimination to control the current source inverter. At the end, the researcher exports parallel resonant and three-phase V-connected to get an adjustable three-phase high current generator which provides the need of electric equipment experiment. The application of scheming pulse width modulation gets a specific angle which is regarded as trigger signal shift of the switch. Through a fraction of frequency variation in this system, the researcher finds out the minimum of total harmonic distrotion and the current of feedback control output which are between the fixed range of frequency. The above process is established through MATLAB to build a complete frame, simulation, and analysis. Then the researcher takes TMS320F2812, a digital signal processor, as a controller to provide touching signal of switch and handling feedback control. After many testing of simulation and experiment, the method of this research is proved to be practical.

    第一章 緒論...............................................1 1.1 研究動機..........................................1 1.2 系統描述與研究方法................................2 1.3 內容大綱..........................................3 第二章 並聯諧振電路分析...................................5 2.1 前言..............................................5 2.2 理想並聯諧振數學模型..............................6 2.3 非理想並聯諧振數學模型............................7 2.4 頻寬及品質因數...................................10 第三章 特定諧波消除與規劃................................13 3.1 前言.............................................13 3.2 電流源變流器輸出波形規劃.........................13 3.3 數值分析.........................................17 第四章 諧振式電流產生器系統..............................22 4.1 前言.............................................22 4.2 電路分析.........................................22 4.2.1 直流電流源電路...............................23 4.2.1.1 降壓轉換器介紹...........................23 4.2.1.2 電流磁滯控制法...........................27 4.2.2 電流源變流器電路.............................28 4.2.2.1 變流器部分...............................28 4.2.2.2 基本波大小...............................30 4.3 諧振電路.........................................31 4.3.1 降壓變壓器...................................32 4.3.1.1 開路試驗.................................33 4.3.1.2 短路試驗.................................35 4.3.2 三相V接式變壓器.............................36 4.4 回授控制部份.....................................37 第五章 硬體架構與軟體規劃................................42 5.1 前言.............................................42 5.2 硬體架構.........................................42 5.2.1 系統規劃電路.................................42 5.2.2 電流感測電路.................................43 5.2.3 絕對值平均輸出電路...........................44 5.2.4 光耦合驅動電路...............................46 5.2.5 可變中心頻率帶通濾波電路.....................46 5.3 軟體規劃.........................................49 5.3.1 數位訊號處理器...............................49 5.3.2 程式流程.....................................50 第六章 系統模擬與實作....................................54 6.1 前言.............................................54 6.2 開關觸發訊號.....................................55 6.3 三相Y-Δ接.......................................63 6.4 三相V接.........................................76 第七章 結論與建議........................................88 參考文獻.................................................90 附錄.....................................................95 作者簡介................................................105

    [1] 許溢逅,「漏電斷路器的基礎與實務」,文笙書局,民國八十四年四月。
    [2] 許溢逅,「低壓電路之保護協調」,開發圖書公司,民國七十二年。
    [3] 林義讓,林清樺,「電機設備保護」,全華科技圖書,民國八十一年五月。
    [4] 黃克定,「電機設備保護」,文笙書局,民國八十五年。
    [5] 邱明義,廖秀雄,廖財昌,「基礎交流電路」,徐世基金會,民國七十四年五月。
    [6] A. Shenkman, M. Zarudi, and I. Tchernina, “A current source parallel in steady-state operation,” Electrical and Electronics Engineers in Israel, 18th Convention, pp. 4.5.3/1 - 4.5.3/4, March 1995.
    [7] 林豋彬,包蒼龍,杜日富, 「電路學」,科技圖書股份有限公司,民國七十八年三月。
    [8] A. DeCarlo, and Pen-Min Lin, Linear circuit analysis, Oxford University Press, 2nd ed., 2001.
    [9] 周運昇,「並聯諧振式大電流產生器之研製」,碩士論文,國立臺灣科技大學,2006年6月。
    [10] Philip T. Krein, Elements of power electronics, Oxford University Press, 1998.
    [11] Artice M. Davis, Linear circuit analysis, PWS Pub., 1998.
    [12] Robert L. Boylestad, Introductory circuit analysis, Prentice Hall, 2000.
    [13] Theofore F. Bogart, and Jr., Electric circuits, McGraw-Hill Inc., 2nd ed., 1992.
    [14] 張家宏,「特定諧波規劃與消除之數位斷路器試驗用電流源之研製」,碩士論文,國立臺灣科技大學,2007年7月。
    [15] Robert E. Betz, Robin J. Evans, Brian J. Cook, “Optimal Pulsewidth Modulation for Current Source Inverter,” IEEE Transactions on Industrial Electronics, vol. 33, no. 3, pp. 381-324, 1986
    [16] Behrooz Mirafzal and Student Member, “A Nonlinaer Controller for Current Source Inverter Induction Motor Drive System,” IEEE, Nabel A.O.Demerdash, Fellow IEEE, pp. 1491-1497, 2003
    [17] C. Namumdini and P. C. Sen, “Optimal Pulse Width Modulation for Current Source Inverters,” IEEE Transactions on Iudustry Applications, vol. 22, pp. 1052-1072, 1986
    [18] L. H. Walker and P. M. Espelage, “A High Performance Controlled Current Inverter Drive,” IEEE Trans. Ind. Appl., vol. IA-16, pp. 193-202, 1980
    [19] G. S. Buja, “Optimum Output Waveforms in PWM Inverters,” IEEE Trans. Ind. Appl, vol. IA-16, pp. 830-836, 1980
    [20] H. S. Patel and R. G. Hoft, “Generalized Techniques of Harmonic Elimination and Voltage in Thyristor Inverters : Part I-Harmonic Elimination,” IEEE Trans. Ind. Appl., vol. IA-9, pp. 310-317, 1973
    [21] Jian Sun, S. Beineke and H. Grotstollen, “Optimal PWM based on real-time solution of harmonic elimination equations,” IEEE Transactions on Power Electronics, vol. 11, no. 4, pp. 612-621, 1996.
    [22] G . Bezanov and J. Richardson, “Algorithmic modelling of PWM solution sets for online control of inverters,” IEEE PESC, vol. 1, pp. 595-600, 1993.
    [23] Li Li, D. Czarkowski, Yaguang Liu and P. Pillay, “Multilevel selective harmonic elimination PWM technique in series-connected voltage inverters,” IEEE Transactions on Industry Applications, vol. 36, no. 1, pp. 160-170, 2000.

    [24] J. Sun, S. Beineke and H. Grotstollen, “DSP-based real-time harmonic elimination of PWM inverters,” IEEE PESC, vol. 1, pp. 679-685, 1994.
    [25] A.R. Bakhshai, H. Jin and G. Joos, “Reduction of harmonic concentration and acoustic noises using variable selective harmonic elimination technique,” IEEE IECON, vol. 1, pp. 102-107, 1996.
    [26] R. Pindado, C. Jaen and J. Pou, “Robust method for optimal PWM harmonic elimination based on the Chebyshev functions,” 8th International Conference on Harmonics And Quality of Power, vol. 2, pp. 976-981, 1998.
    [27] J.R. Wells, B.M. Nee, P.L Chapman and P.T. Krein, “Optimal harmonic elimination control,” IEEE PESC, vol. 6, pp. 4214-4219, 2004.
    [28] V.G. Agelidis, A. Balouktsis and I. Balouktsis, “On applying a minimization technique to the harmonic elimination PWM control: the bipolar waveform,” IEEE, Power Electronics Letters, vol. 2, no. 2, pp. 41-44, 2004.
    [29] P.N. Enjeti, P.D Ziogas, and J.F. Lindsay, “Programmed PWM techniques to eliminate harmonics: a critical evaluation,” IEEE Transactions on Industry Applications, vol. 26, no. 2, pp. 302-316, 1990.
    [30] H.R. Karshenas, H.A. Kojori and S.B. Dewan, “Generalized techniques of selective harmonic elimination and current control in current source inverters/converters,” IEEE Transactions on Power Electronics, vol. 10, no. 5, pp. 566-573, 1995.
    [31] Chunfang Zheng, Bo Zhang, and Dongyuan Qiu, “Solving switching angles for the inverter's selected harmonic elimination technique with Walsh function,” IEEE Proceedings on Electrical Machines and Systems, vol. 2, pp. 27-29, 2005
    [32] N. J. Chiasson, M. L. Tolbert, K. J. Mckenzie, and Zhong Du, “A complete solution to the harmonic elimination problem,” IEEE Trans. on Power Electronics, vol. 19, no. 2, pp. 491-499, 2004
    [33] 巫昇峰,「基於曲折繞接線變壓器及特定諧波消除之三階層反流器研製」,碩士論文,國立臺灣科技大學,2007年6月。

    [34] Wenyi Zhang and Yao Sun, “Optimization of Output Voltage Waveform of Selective Harmonic Elimination Inverter,” IEEE Power international on Power System Technology Conference record, pp. 1-4, 2006
    [35] Eryong Guan, Pinggang Song, Manyuan Ye, and Bin Wu, “Selective Harmonic Elimination Techniques for Multilevel Cascaded H-Bridge Inverters,” IEEE-PEDS Conference record, vol. 2, pp. 1441-1446, 2005
    [36] S. R. Bowes, S. Grewal, and D. Holliday, “Single-phase three-level regular-sampled selective harmonic elimination PWM,” IEE Proceedings Electric Power Applications, vol. 148, no. 2, pp. 155-161, 2001
    [37] Qin Liang, Zhang Hui, Liu Kaipei, and Qisheng Liu, “An Improved Modulation of the Selective Harmonic Elimination Controlling,” IEEE Power on Power System technology Conference record, pp. 1-5, 2006
    [38] F. Swift and A. Kamberis, “A new Walsh domain technique of harmonic elimination and voltage control in pulse-width modulated inverters,” IEEE Trans. on Power Electronics, vol. 8, no. 2, pp. 170-185, 1993
    [39] Mohan, Undeland and Robbins, “Power Electronics 3rd ed,” John Wiley & Sons, 2003.
    [40] Robert W. Erickson and Dragn Makismovic, Fundamentals of Power Electronics 2nd ed, Kluwer Academic Publishers, 2001.
    [41] Hong-Ying Wu, Xiao-Ming Yuan, Jin-Fa Zhang and Wei-Xun Lin, “Novel single phase current source buck PFC with delta modulation control strategy,” IEEE PEVSD, pp. 138-143, 1996
    [42] Hong-Ying Wu, Xiao-Ming Yuan, Jin-Fa Zhang and Wei-Xun Lin, “Single-phase unity power factor current-source rectification with buck-type input,” IEEE PESC, vol. 2, pp. 1149-1154, 1996.

    [43] Jai P. Agrawal, Power electronic systems: theory and design, Prentice Hall, 2001.
    [44] Yan-Fei Liu and P.C. Sen, “Large-signal modeling of hysteretic current-programmed converters,” IEEE Transactions on Power Electronics, vol. 11, no. 3, pp. 423-430, 1996.
    [45] R.B.Sepe and Jr, “A unified approach to hysteretic and ramp comparison current controllers,” IEEE IASAM, vol. 1, pp. 724-731, 1993.
    [46] R. Krishnan, Electric motor drives:modeling, analysis and control, Prentice Hall, 2001.
    [47] C. Gatlan and L. Gatlan, “AC to DC PWM voltage source converter under hysteresis current control,” IEEE Transactions on Industrial Electronics, vol. 2, 1997.
    [48] Muhammad H. Rashid, Power electronics : circuits, devices, and applications, Prentice Hall, 3rd ed., 2004.
    [49] 蕭進松,謝承達,「電機機械」,全華科技圖書,民國八十八年八月。
    [50] Stephen J. Chapman, “Electric Machinery Fuundamentals 3rd ed,” Mcgraw Hill.Inc, 2003.

    QR CODE