簡易檢索 / 詳目顯示

研究生: 仲井駿
Shun Nakai
論文名稱: 有機酸濃度對噴霧乾燥製備YAG:Ce粉末螢光性質研究
Correlation between acid concentration and photoluminescence of YAG:Ce powder prepared by spray-drying
指導教授: 施劭儒
Shao-Ju Shih
口試委員: 周育任
Yu-Jhen Chou
游進陽
Ching-Yang Yu
王丞浩
Chen-Hao Wang
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 97
中文關鍵詞: 釔鋁石榴石噴霧乾燥法光致發光
外文關鍵詞: Ce, Yttrium aluminum, Phosphors
相關次數: 點閱:210下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

鈰摻雜之釔鋁石榴石熒光粉為白色發光二極管(LED)的黃色激發源, 為現今最具應用之熒光粉材料。鈰摻雜之釔鋁石榴石熒光粉透過噴霧乾燥法製備。噴霧乾燥法跟常見的固態法相比下,更能有效地為粉體提供均勻的顆粒和規則的形狀。此研究目的在於利用前驅物中添加四種不同濃度(0.2 M, 0.5 M, 1 M and 2 M)的檸檬酸製備鈰摻雜之釔鋁石榴石熒光粉,控制形貌來提高光致熒光性質。粉體的晶粒大小、表面形貌、顆粒大小及比表面積可以藉由X光繞射儀(XRD)、聚焦離子束顯微系統(FIB)、氮氣吸脫附分析儀(BET)分別鑒定,鈰摻雜之釔鋁石榴石熒光粉形成機制亦在本實驗中加以討論。實驗結果顯示,利用1M濃度的檸檬酸製備的鈰摻雜之釔鋁石榴石熒光粉具有最高的熒光強度。


Ce-doped yttrium allminum garnet (Y3Al5O12:Ce, YAG:Ce) was used as the yellow-emmiting phosphor for White light-emitting diorde (LED) due to the excellent property. The YAG:Ce phosphor powder were prepared by spray drying. Spray drying offers the advantage of homogenous particles and regular shape comparing to the common method of solid state reaction. It is well known that the organic acids plays the important role on the particle shape for the spray dried powders. In this study, precucors with various concentration (0.2 M, 0.5 M, 1 M and 2 M) of citric acid were used for preparation of YAG:Ce powder to control the morphology and improve the photoluminescence properties. The crystallite size, morphologies, particle size, specific surface area and photoluminescence property of YAG:Ce powder were examined. In addition, the formation mechanisms of various YAG:Ce powders were discussed. YAG:Ce powder treated with 1 M citric acid excibited the highest photoluminescence intensity.

摘要 Abstract Acknowledgment List of Figure List of Table Chapter 1 Introduction 1.1 Background 1.2 Objective Chapter 2 Literature review 2.1 Luminescence materials 2.1.1 Introduction of luminescence 2.1.2 Mechanism of photoluminescence 2.2 Property of YAG:Ce 2.3 Application of YAG phosphor 2.3.1 Solid state laser 2.3.2 Cathode ray tube 2.3.3 White LED 2.4 Synthesis methods 2.4.1 Solid state method 2.4.2 Co-precipitation method 2.4.3 Hydrothermal method 2.4.4 Spray pyrolysis 2.4.5 Spray drying 2.5 Spray drying 2.5.1 Outline of spray drying 2.5.2 Parameter for particle formation 2.5.3 Carboxylic acid 2.6 The factor influencing photoluminescence 2.6.1 Ce content 2.6.2 Crystallite size 2.6.3 Particle shape 2.6.4 Surface area Chapter 3 Experimental procedure 3.1 Synthesis 3.2 Experimental ingredients 3.3 Experimental instruments 3.4 Characterizations for materials 3.4.1 X-ray diffractions 3.4.2 Focused Ion Beam-Scanning Electron Microscopy 3.4.3 BET 3.4.4 Photoluminescence spectrometer Chapter 4 Results 4.1 Results of analysis for as dried powder 4.1.1 Focused ion beam-scanning electron microscopy 4.2 Results of analysis for YAG:Ce powder 4.2.1 Phase composition 4.2.2 Focused ion beam-scanning electron microscopy 4.2.3 BET 4.2.4 Photoluminescence spectra Chapter 5 Discussion 5.1 Formation mechanism 5.2 Influence of particle morphology on photoluminescence emission 5.3 Relationship between PL intensity and surface area 5.4 Relationship between PL intensity and crystallite size Chapter 6 Conclusions Chapter 7 Future works Reference

[1] J.S. Cho, K.Y. Jung, Y.C. Kang, Two-step spray-drying synthesis of dense and highly luminescent YAG:Ce3+ phosphor powders with spherical shape, RSC Adv. 5 (2015) 8345–8350. doi:10.1039/C4RA14302G.
[2] Y. Shi, G. Zhu, M. Mikami, Y. Shimomura, Y. Wang, Photoluminescence of green-emitting Ca7(PO4)2(SiO4)2:Eu2+ phosphor for white light emitting diodes, Opt. Mater. Express, OME. 4 (2014) 280–287. doi:10.1364/OME.4.000280.
[3] S. Nishiura, S. Tanabe, K. Fujioka, Y. Fujimoto, Properties of transparent Ce:YAG ceramic phosphors for white LED, Optical Materials. 33 (2011) 688–691. doi:10.1016/j.optmat.2010.06.005.
[4] Y. Narukawa, M. Ichikawa, D. Sanga, M. Sano, T. Mukai, White light emitting diodes with super-high luminous efficacy, J. Phys. D: Appl. Phys. 43 (2010) 354002. doi:10.1088/0022-3727/43/35/354002.
[5] J.K. Kim, E.F. Schubert, Transcending the replacement paradigm of solid-state lighting, Opt. Express, OE. 16 (2008) 21835–21842. doi:10.1364/OE.16.021835.
[6] K. Bando, K. Sakano, Y. Noguchi, Y. Shimizu, Development of High-bright and Pure-white LED Lamps, Journal of Light & Visual Environment. 22 (1998) 1_2-1_5. doi:10.2150/jlve.22.1_2.
[7] P. Schlotter, R. Schmidt, J. Schneider, Luminescence conversion of blue light emitting diodes, Appl Phys A. 64 (1997) 417–418. doi:10.1007/s003390050498.
[8] R. Mueller-Mach, G.O. Mueller, M.R. Krames, T. Trottier, High-power phosphor-converted light-emitting diodes based on III-Nitrides, IEEE Journal of Selected Topics in Quantum Electronics. 8 (2002) 339–345. doi:10.1109/2944.999189.
[9] T.-M. Wang, Correlation of the concentration of carboxyl functional group, morphology and photoluminescence properties for YAG powder, National Taiwan University of Science and Technology, 2018.
[10] C. Ronda, Rare Earth Phosphors: Fundamentals and Applications, in: K.H.J. Buschow, R.W. Cahn, M.C. Flemings, B. Ilschner, E.J. Kramer, S. Mahajan, P. Veyssière (Eds.), Encyclopedia of Materials: Science and Technology, Elsevier, Oxford, 2001: pp. 8026–8033. doi:10.1016/B0-08-043152-6/01443-1.
[11] S. Shionoya, W.M. Yen, H. Yamamoto, Phosphor Handbook, 2, CRC Press, Boca Raton, FL, 2006.
[12] G. Blasse, B.C. Grabmaier, Luminescent Materials, Reprint, Springer, Berlin ; New York, 1994.
[13] C.R. Ronda, Luminescence: From Theory to Applications, 1, Wiley-VCH, Weinheim, 2007.
[14] M. Sato, S.W. Kim, Y. Shimomura, T. Hasegawa, K. Toda, G. Adachi, Chapter 278 - Rare Earth-Doped Phosphors for White Light-Emitting Diodes, in: B. Jean-Claude, P. Vitalij K. (Eds.), Handbook on the Physics and Chemistry of Rare Earths, Elsevier, 2016: pp. 1–128. doi:10.1016/bs.hpcre.2016.03.001.
[15] Y.-C. Lin, M. Karlsson, M. Bettinelli, Inorganic Phosphor Materials for Lighting, Top Curr Chem (Z). 374 (2016) 21. doi:10.1007/s41061-016-0023-5.
[16] H. Yagi, K. Takaichi, K. Ueda, Y. Yamasaki, T. Yanagitani, A.A. Kaminskii, The Physical Properties of Composite YAG Ceramics, 15 (2005) 8.
[17] W. Jing, F. Li, S. Yu, X. Ji, T. Xu, J. Zhang, Z. Pan, Z. Yuan, B. Kang, J. Deng, W. Yin, H. Huang, High efficiency synthesis of Nd:YAG powder by a spray co-precipitation method for transparent ceramics, Journal of the European Ceramic Society. 38 (2018) 2454–2461. doi:10.1016/j.jeurceramsoc.2017.12.059.
[18] D. Maiti, D. Rajagopal, A. Kar, P.B. Ramteke, S.G. Koolagudi, Simulation of cathode ray tube, in: 2017 International Conference on Data Management, Analytics and Innovation (ICDMAI), 2017: pp. 249–253. doi:10.1109/ICDMAI.2017.8073519.
[19] S. Nakamura, S. Pearton, G. Fasol, The Blue Laser Diode: The Complete Story, 2nd updated and extended ed. 2000, Springer, Berlin ; New York, 2000.
[20] G. Ulahannan, Synthesis and sintering of translucent yttrium aluminium garnet, MTech, 2014. http://ethesis.nitrkl.ac.in/5829/ (accessed November 10, 2018).
[21] D. Valiev, T. Han, V. Vaganov, S. Stepanov, The effect of Ce3+ concentration and heat treatment on the luminescence efficiency of YAG phosphor, Journal of Physics and Chemistry of Solids. 116 (2018) 1–6. doi:10.1016/j.jpcs.2018.01.007.
[22] L. Jiang, X. Zhang, H. Tang, S. Zhu, Q. Li, W. Zhang, X. Mi, L. Lu, X. Liu, A Mg2+-Ge4+ substituting strategy for optimizing color rendering index and luminescence of YAG: Ce3+ phosphors for white LEDs, Materials Research Bulletin. 98 (2018) 180–186. doi:10.1016/j.materresbull.2017.10.019.
[23] V.V. Osipov, R.N. Maksimov, V.A. Shitov, K.E. Lukyashin, G. Toci, M. Vannini, M. Ciofini, A. Lapucci, Fabrication, optical properties and laser outputs of Nd:YAG ceramics based on laser ablated and pre-calcined powders, Optical Materials. 71 (2017) 45–49. doi:10.1016/j.optmat.2016.06.021.
[24] Ł. Zych, R. Lach, The effect of powders homogenisation conditions on the synthesis of yttrium aluminium garnet (YAG) by a solid-state reaction, Ceramics International. 43 (2017) 4029–4036. doi:10.1016/j.ceramint.2016.11.142.
[25] Z. Song, J. Liao, X. Ding, X. Liu, Q. Liu, Synthesis of YAG phosphor particles with excellent morphology by solid state reaction, Journal of Crystal Growth. 365 (2013) 24–28. doi:10.1016/j.jcrysgro.2012.12.022.
[26] C. Ye, X. Yue, H. Zong, G. Liao, H. Ru, In-situ synthesis of YAG@Si3N4 powders with enhanced mechanical properties, Journal of Alloys and Compounds. 731 (2018) 813–821. doi:10.1016/j.jallcom.2017.10.064.
[27] M. Rahmani, O. Mirzaee, M. Tajally, M.R. Loghman-Estarki, A comparative study of synthesis and spark plasma sintering of YAG nano powders by different co-precipitation methods, Ceramics International. 44 (2018) 10035–10046. doi:10.1016/j.ceramint.2018.02.148.
[28] M. Rahmani, O. Mirzaee, M. Tajally, M.R. Loghman-Estarki, The effects of pH and excess Al3+ content on the microstructure and phase evolution of YAG polycrystals, Ceramics International. 43 (2017) 12563–12571. doi:10.1016/j.ceramint.2017.06.131.
[29] B. Ma, B. Wang, W. Zhang, N. Wei, T. Lu, J. He, Promotion of powder crystallinity and its influence on the properties of Nd:YAG transparent ceramics, Optical Materials. 64 (2017) 384–390. doi:10.1016/j.optmat.2017.01.006.
[30] K. Sarath Chandra, M. Monalisa, G. Ulahannan, D. Sarkar, H.S. Maiti, Preparation of YAG nanopowder by different routes and evaluation of their characteristics including transparency after sintering, J Aust Ceram Soc. 53 (2017) 751–760. doi:10.1007/s41779-017-0088-9.
[31] J. Dai, Y. Pan, H. Chen, T. Xie, H. Kou, J. Li, Fabrication of Tb3Al5O12 transparent ceramics using co-precipitated nanopowders: The influence of ammonium hydrogen carbonate to metal ions molar ratio, Ceramics International. 43 (2017) 14457–14463. doi:10.1016/j.ceramint.2017.07.225.
[32] C.S. Cundy, P.A. Cox, The Hydrothermal Synthesis of Zeolites:  History and Development from the Earliest Days to the Present Time, Chem. Rev. 103 (2003) 663–702. doi:10.1021/cr020060i.
[33] M.M. Xu, Z.J. Zhang, J.J. Zhu, J.T. Zhao, X.Y. Chen, Solvothermal Synthesis and Luminescence Properties of Yttrium Aluminum Garnet Monodispersed Crystallites with Well-Developed Faces, J. Phys. Chem. C. 118 (2014) 27000–27009. doi:10.1021/jp508507s.
[34] L. Wang, F. Zhao, X. Yang, C. Pan, H. Huang, Property of YAG:Ce3+ nanophosphors prepared by solvothermal method using triethylene-tetramine as a reaction solvent, RSC Adv. 5 (2015) 26339–26345. doi:10.1039/C5RA00580A.
[35] P. Nørby, K.M.Ø. Jensen, N. Lock, M. Christensen, B.B. Iversen, Continuous Flow Supercritical Water Synthesis and Temperature-Dependent Defect Structure Analysis of YAG and YbAG Nanoparticles, Crystal Growth & Design. 16 (2016) 2646–2652. doi:10.1021/acs.cgd.5b01761.
[36] A. Aboulaich, J. Deschamps, R. Deloncle, A. Potdevin, B. Devouard, G. Chadeyron, R. Mahiou, Rapid synthesis of Ce3+-doped YAG nanoparticles by a solvothermal method using metal carbonates as precursors, New J. Chem. 36 (2012) 2493–2500. doi:10.1039/C2NJ40429J.
[37] M. Odziomek, F. Chaput, F. Lerouge, M. Sitarz, S. Parola, Highly luminescent YAG:Ce ultra-small nanocrystals, from stable dispersions to thin films, J. Mater. Chem. C. 5 (2017) 12561–12570. doi:10.1039/C7TC03504G.
[38] W.-T. Lin, Y.-C. Wu, One-Pot Synthesis of Submicrometer-Sized Ce:YAG Spherical Particles by Solvothermal Process Using Alcohol Solvents, Journal of the American Ceramic Society. 98 (2015) 2754–2759. doi:10.1111/jace.13695.
[39] X. Ding, Y. Shi, G. Zhu, Y. Wang, Novel synthesis method of YAG:Ce3+ micron-sized powders and its luminescence properties, Materials Chemistry and Physics. 147 (2014) 351–355. doi:10.1016/j.matchemphys.2014.05.038.
[40] G. Dantelle, M. Salaün, R. Bruyère, S. Kodjikian, A. Ibanez, Luminescent coatings prepared from optimized YAG:Ce nanoparticles, Thin Solid Films. 643 (2017) 36–42. doi:10.1016/j.tsf.2017.05.001.
[41] X. Zhang, C. Jin, Y. Zhang, N. Jia, W. He, Synthesis of spherical yttrium aluminum garnet via a mixed solvothermal method, RSC Adv. 4 (2014) 57452–57457. doi:10.1039/C4RA09871D.
[42] 李姿儀, 利用添加物控制鈦酸鍶晶界結構之研究, 國立臺灣科技大學, n.d.
[43] S.H. Lee, D.S. Jung, J.M. Han, H. Young Koo, Y.C. Kang, Fine-sized Y3Al5O12:Ce phosphor powders prepared by spray pyrolysis from the spray solution with barium fluoride flux, Journal of Alloys and Compounds. 477 (2009) 776–779. doi:10.1016/j.jallcom.2008.10.154.
[44] L. Mancic, K. Marinkovic, B.A. Marinkovic, M. Dramicanin, O. Milosevic, YAG:Ce3+ nanostructured particles obtained via spray pyrolysis of polymeric precursor solution, Journal of the European Ceramic Society. 30 (2010) 577–582. doi:10.1016/j.jeurceramsoc.2009.05.037.
[45] C.M.A. Ferreira, G.S. Freiria, E.H. de Faria, L.A. Rocha, K.J. Ciuffi, E.J. Nassar, Yttrium aluminum garnet coating on glass substrate, Journal of Luminescence. 170 (2016) 686–691. doi:10.1016/j.jlumin.2015.02.026.
[46] S.H. Lee, H.Y. Koo, S.M. Lee, Y.C. Kang, Characteristics of Y3Al5O12:Ce phosphor powders prepared by spray pyrolysis from ethylenediaminetetraacetic acid solution, Ceramics International. 36 (2010) 611–615. doi:10.1016/j.ceramint.2009.09.041.
[47] H.J. Lee, S.K. Hong, D.S. Jung, Y.C. Kang, Y3Al5O12:Tb phosphor particles prepared by spray pyrolysis from spray solution with polymeric precursors and ammonium fluoride flux, Materials Letters. 59 (2005) 2383–2387. doi:10.1016/j.matlet.2005.02.083.
[48] O. Milosevic, L. Mancic, M.E. Rabanal, J.M. Torralba, B. Yang, P. Townsend, Structural and Luminescence Properties of Gd2O3:Eu3+ and Y3Al5O12:Ce3+ Phosphor Particles Synthesized via Aerosol, Journal of The Electrochemical Society. 152 (2005) G707. doi:10.1149/1.1972319.
[49] J.S. Cho, K.Y. Jung, M.Y. Son, Y.C. Kang, Large-scale production of spherical Y2O3:Eu3+ phosphor powders with narrow size distribution using a two-step spray drying method, RSC Adv. 4 (2014) 62965–62970. doi:10.1039/C4RA09225B.
[50] S.S. Balabanov, E.M. Gavrishchuk, V.V. Drobotenko, O.V. Palashov, E.Y. Rostokina, R.P. Yavetskiy, A new approach to Y3Al5O12 transparent ceramics by vacuum sintering of spray-dried xerogels, Ceramics International. 42 (2016) 961–965. doi:10.1016/j.ceramint.2015.09.025.
[51] K. Yang, J. Rong, J. Feng, Y. Zhuang, S. Tao, C. Ding, In-situ fabrication of amorphous/eutectic Al2O3–YAG ceramic composite coating via atmospheric plasma spraying, Journal of the European Ceramic Society. 36 (2016) 4261–4267. doi:10.1016/j.jeurceramsoc.2016.06.012.
[52] L. Zhang, H. Yang, X. Qiao, T. Zhou, Z. Wang, J. Zhang, D. Tang, D. Shen, Q. Zhang, Systematic optimization of spray drying for YAG transparent ceramics, Journal of the European Ceramic Society. 35 (2015) 2391–2401. doi:10.1016/j.jeurceramsoc.2015.02.004.
[53] H.N. Girish, C. Zhu, F.F. Ma, G.Q. Shao, Synthesis of cubic yttrium aluminum garnet (YAG) powders by co-precipitation and two-step calcinations, AIP Conference Proceedings. 1829 (2017) 020019. doi:10.1063/1.4979751.
[54] S.S. Balabanov, E.M. Gavrishchuk, V.V. Drobotenko, O.V. Palashov, E.Y. Rostokina, R.P. Yavetskiy, A new approach to Y3Al5O12 transparent ceramics by vacuum sintering of spray-dried xerogels, Ceramics International. 42 (2016) 961–965. doi:10.1016/j.ceramint.2015.09.025.
[55] A.B.D. Nandiyanto, K. Okuyama, Progress in developing spray-drying methods for the production of controlled morphology particles: From the nanometer to submicrometer size ranges, Advanced Powder Technology. 22 (2011) 1–19. doi:10.1016/j.apt.2010.09.011.
[56] M. Serantoni, A. Piancastelli, A.L. Costa, L. Esposito, Improvements in the production of Yb:YAG transparent ceramic materials: Spray drying optimisation, Optical Materials. 34 (2012) 995–1001. doi:10.1016/j.optmat.2011.06.003.
[57] W.-N. Wang, A. Purwanto, I.W. Lenggoro, K. Okuyama, H. Chang, H.D. Jang, Investigation on the Correlations between Droplet and Particle Size Distribution in Ultrasonic Spray Pyrolysis, Ind. Eng. Chem. Res. 47 (2008) 1650–1659. doi:10.1021/ie070821d.
[58] R. Vehring, Pharmaceutical particle engineering via spray drying, Pharm. Res. 25 (2008) 999–1022. doi:10.1007/s11095-007-9475-1.
[59] E. Lintingre, F. Lequeux, L. Talini, N. Tsapis, Control of particle morphology in the spray drying of colloidal suspensions, Soft Matter. 12 (2016) 7435–7444. doi:10.1039/C6SM01314G.
[60] D. Amans, C. Malaterre, M. Diouf, C. Mancini, F. Chaput, G. Ledoux, G. Breton, Y. Guillin, C. Dujardin, K. Masenelli-Varlot, P. Perriat, Synthesis of Oxide Nanoparticles by Pulsed Laser Ablation in Liquids Containing a Complexing Molecule: Impact on Size Distributions and Prepared Phases, The Journal of Physical Chemistry C. 115 (2011) 5131–5139. doi:10.1021/jp109387e.
[61] M. Borlaf, M. Frankowska, W.W. Kubiak, T. Graule, Strong photoluminescence emission at low dopant amount in YAG:Ce and YAG:Eu phosphors, Materials Research Bulletin. 100 (2018) 413–419. doi:10.1016/j.materresbull.2018.01.005.
[62] W.-N. Wang, W. Widiyastuti, T. Ogi, I.W. Lenggoro, K. Okuyama, Correlations between Crystallite/Particle Size and Photoluminescence Properties of Submicrometer Phosphors, Chem. Mater. 19 (2007) 1723–1730. doi:10.1021/cm062887p.
[63] W.-N. Wang, W. Widiyastuti, T. Ogi, I.W. Lenggoro, K. Okuyama, Correlations between Crystallite/Particle Size and Photoluminescence Properties of Submicrometer Phosphors, Chem. Mater. 19 (2007) 1723–1730. doi:10.1021/cm062887p.
[64] T. Han, S. Cao, D. Zhu, C. Zhao, M. Ma, M. Tu, J. Zhang, Effects of annealing temperature on YAG:Ce synthesized by spray-drying method, Optik - International Journal for Light and Electron Optics. 124 (2013) 3539–3541. doi:10.1016/j.ijleo.2012.10.067.
[65] X. He, X. Liu, R. Li, B. Yang, K. Yu, M. Zeng, R. Yu, Effects of local structure of Ce3+ ions on luminescent properties of Y3Al5O12:Ce nanoparticles, Scientific Reports. 6 (2016) 22238. doi:10.1038/srep22238.
[66] X. Chen, B. Lei, Y. Wang, N. Zhao, Morphological control and in vitro bioactivity of nanoscale bioactive glasses, Journal of Non-Crystalline Solids. 355 (2009) 791–796. doi:10.1016/j.jnoncrysol.2009.02.005.
[67] K. Zhang, H.-Z. Liu, Y.-T. Wu, W.-B. Hu, Co-precipitation synthesis and luminescence behavior of Ce-doped yttrium aluminum garnet (YAG:Ce) phosphor: The effect of precipitant, Journal of Alloys and Compounds. 453 (2008) 265–270. doi:10.1016/j.jallcom.2006.11.101.
[68] P. Scherrer, Bestimmung der Größe und der inneren Struktur von Kolloidteilchen mittels Röntgenstrahlen, Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse. 1918 (1918) 98–100.
[69] S.-J. Shih, K.B. Borisenko, L.-J. Liu, C.-Y. Chen, Multiporous ceria nanoparticles prepared by spray pyrolysis, J Nanopart Res. 12 (2010) 1553–1559. doi:10.1007/s11051-010-9863-z.

QR CODE