簡易檢索 / 詳目顯示

研究生: 洪雄春
Hsiung-Chun Hung
論文名稱: 釤分佈對釤摻雜二氧化鈰導電性質之影響
Correlation of Sm distribution and corresponding conductivity for Sm-doped ceria
指導教授: 施劭儒
Shao-Ju Shih
口試委員: 段維新
Wei-Hsing Tuan
顏怡文
Yee-wen Yen
梁元彰
Yuan-Chang Liang
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 97
中文關鍵詞: 固態氧化物燃料電池電解質材料噴霧熱解法二氧化鈰水解能氧化釤
外文關鍵詞: Solid oxide fuel cell, electrolyte material, spray pyrolysis, cerium, hydration energy, samarium
相關次數: 點閱:340下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要探討以噴霧熱解法製備元素釤摻雜至二氧化鈰的固態電解質材料Ce0.8Sm0.2O1.9 (20SDC),並比較不同的濃度均勻度與離子導電性質兩者之間的關係。由於元素釤摻雜二氧化鈰具有良好的離子導電性質,故為固態氧化物燃料電池重要的電解質材料,並由前人的各項研究發現,在不同製程中,如固態法、溶膠凝膠法、噴霧熱解法等,釤摻雜至二氧化鈰中卻具有不同的最佳摻雜濃度,這意味者在不同製程中元素釤在二氧化鈰中有不同的分散行為,而具有不同的導電性質。因此本研究將利用噴霧熱解法製備釤摻雜二氧化鈰系統,進而探討元素釤摻雜的分佈情形對二氧化鈰導電性質之影響。此外前驅物的不同特性也會影響元素成分在粉體中的分散性質,如前驅物的密度、溶解度與水解能等因素與成分的分散性質有著密不可分的關係,因此本研究將選用四種前驅物:硝酸鈰銨、硝酸釤、醋酸鈰與醋酸釤,並探討不同前驅物的特性組合與成分分佈之間的關係。其中前驅物的量測分析,透過熱重分析量測不同前驅物的熱裂解溫度以及抽氣過濾法量測不同前驅物之溶解度。在粉體的量測分析上,將利用X光繞射儀鑑定(X-ray diffraction analysis, XRD)粉體的結晶結構,以及掃描式電子顯微鏡(Scanning electron microscopy, SEM)觀察粉體形貌,最後以冷凍切片技術製備粉體的穿透式電子顯微鏡試樣,並利用X光微區分析,量測粉體中元素釤的分散均勻性質。在電解質塊材的量測分析上,同樣使用XRD觀察其結晶結構,以及透過金相研磨技術並利用SEM觀察塊材內的微結構緻密程度,最後以交流阻抗分析儀量測塊材之阻抗變化,並計算其離子導電度與濃度均勻性質進行比較。由實驗結果中發現,對於釤摻雜二氧化鈰系統的成分分佈,水解能的影響因素更大於溶解性質,此外更發現成分的均勻性質與離子導電度,越均勻的成分分佈將獲得更高的離子導電度。

    關鍵字:固態氧化物燃料電池、電解質材料、噴霧熱解法、二氧化鈰、水解能、氧化釤。


    Samarium-doped ceria is one of the potential candidates for the application of solid oxide fuel cells due to the high oxygen ionic conductivity. Various techniques (e.g., solid state, sol-gel, and spray pyrolysis) have been reported on samarium-doped ceria, however the optimum dosages of samarium are still not clear, it means that there are different distributions of samarium in ceria. In this work, particles of samarium-doped ceria were synthesized from various precursors (cerium acetate, ammonium cerium nitrate, samarium acetate and samarium nitrate) using spray pyrolysis, and focused on the correlations between dopant concentrations and corresponding conductivities. In addition, the precursor properties also effect the distributed behavior of samarium in ceria, such as solubility, density and hydration energy of precursor.

    The characterizations were divided in three parts: the first part focused on precursor analysis. The decomposed temperatures of various precursors were measured by thermogravimeteric analysis; the second part was particle analysis, The X-ray diffractometer (XRD) was used to investigate the crystallographic structure. The morphologies and particle sizes were characterized by using scanning electron microscope (SEM), and the dopant distributions in single particle were determined using energy dispersive X-ray spectroscopy; the final part was bulk analysis. The crystallographic structures of bulks were investigated by XRD, and the microstructures were observed by SEM. In addition, the ionic conductivities were also measured by electrochemical impedance spectroscopy (EIS).

    According to the results of this work, the hydration energy has significant influence on the distributions of samarium in single ceria particle. Furthermore, the homogeneity of samarium in ceria is one of the important factors on ionic conductivity. In summary, the better homogeneity results in, the higher ionic conductivity.

    Keyword: Solid oxide fuel cell, electrolyte material, spray pyrolysis, cerium, hydration energy, samarium.

    第1章、 緒論 1 第2章、 文獻回顧 4 2.1 二氧化鈰之特性與應用 4 2.1.1 物理性質 4 2.1.2 化學性質 6 2.2 二氧化鈰之製備方法 7 2.3 噴霧熱解法 10 2.3.1 噴霧熱解法顆粒的形貌控制 11 2.3.2 噴霧熱解法顆粒的成分分佈控制 13 2.4 燃料電池的重要性 18 2.5 固態氧化物燃料電池之發電原理與組件 21 2.6 導電機制 28 2.6.1 晶粒導電度 30 2.6.1.1 摻雜之影響 30 2.6.1.2 分散均勻性之影響 32 2.6.1.3 晶粒尺寸之影響 34 2.6.1.4 孔隙率之影響 35 2.6.2 晶界導電度 37 2.6.2.1 單位晶界密度(晶粒尺寸)之影響 37 2.6.2.2 空間電荷之影響 40 2.6.2.3 共摻雜元素之影響 43 2.6.2.4 相對密度之影響 44 2.7 環境因素 46 2.7.1 溫度因素 46 2.7.2 氧分壓因素 48 2.8 電化學交流阻抗分析 49 第3章、 實驗目的與方法 50 3.1 實驗目的、藥品與操作儀器 50 3.2 實驗流程 52 3.3 塊材試片的製備 53 3.3.1 粉體的壓錠與燒結 53 3.4 前驅物、粉體與塊材之特性量測 54 3.4.1 熱重/熱差分析儀 54 3.4.2 溶解度量測 55 3.4.3 X光繞射儀 55 3.4.4 場發射掃描式電子顯微鏡 57 3.4.5 場發射穿透式電子顯微鏡 58 3.4.6 穿透式電子顯微鏡試片製備 (冷凍切片技術) 59 3.4.7 試片之相對密度量測 61 3.4.8 交流阻抗分析儀 62 第4章、 結果與討論 63 4.1 前驅物之特性分析 63 4.1.1前驅物的熱重分析 63 4.1.2前驅物溶解度 67 4.2 粉體的性質分析 68 4.2.1 粉體之相分析 68 4.2.2 粉體形貌與粒徑分佈 70 4.2.3 摻雜元素的濃度分析 73 4.3 塊材的性質量測 78 4.3.1 塊材之相分析 78 4.3.2 塊材微結構分析 79 4.3.3 交流阻抗分析 82 4.4 綜合討論 87 第5章、 結論 90 第6章、 未來工作 91 第7章、 參考文獻 92

    [1] U. Hennings, R. Reimert, Investigation of the structure and the redox behavior of gadolinium doped ceria to select a suitable composition for use as catalyst support in the steam reforming of natural gas, Applied Catalysis A: General 325 (1) (2007) 41-49.
    [2] G. Chen, F. Zhu, X. Sun, S. Sun, R. Chen, Benign synthesis of ceria hollow nanocrystals by a template-free method, CrystEngComm 13 (8) (2011) 2904-2908.
    [3] A. Trovarelli, Catalytic Properties of Ceria and CeO2-Containing Materials, Catalysis Reviews 38 (4) (1996) 439-520.
    [4] H. Inaba, H. Tagawa, Ceria-based solid electrolytes, Solid State Ionics 83 (1–2) (1996) 1-16.
    [5] C.-Y. Chen, C.-L. Liu, Doped ceria powders prepared by spray pyrolysis for gas sensing applications, Ceramics International 37 (7) (2011) 2353-2358.
    [6] G.B. Balazs, R.S. Glass, ac impedance studies of rare earth oxide doped ceria, Solid State Ionics 76 (1–2) (1995) 155-162.
    [7] D.A. Andersson, S.I. Simak, N.V. Skorodumova, I.A. Abrikosov, B. Johansson, Optimization of ionic conductivity in doped ceria, Proc. Natl. Acad. Sci. U. S. A. 103 (10) (2006) 3518-3521.
    [8] H. Yahiro, Y. Eguchi, K. Eguchi, H. Arai, Oxygen ion conductivity of the ceria-samarium oxide system with fluorite structure, J Appl Electrochem 18 (4) (1988) 527-531.
    [9] B. Park, H. Lee, K. Park, H. Kim, H. Jeong, Pad roughness variation and its effect on material removal profile in ceria-based CMP slurry, Journal of Materials Processing Technology 203 (1–3) (2008) 287-292.
    [10] A. Bumajdad, J. Eastoe, A. Mathew, Cerium oxide nanoparticles prepared in self-assembled systems, Advances in Colloid and Interface Science 147–148 (0) (2009) 56-66.
    [11] C. Peng, Y. Wang, K. Jiang, B.Q. Bin, H.W. Liang, J. Feng, J. Meng, Study on the structure change and oxygen vacation shift for Ce1−xSmxO2−y solid solution, Journal of Alloys and Compounds 349 (1–2) (2003) 273-278.
    [12] C. Ying-Yu, R. Schmid, Y.A. Chang, Calculation of the equilibrium phase diagrams and the spinodally decomposed structures of the Fe-Cu-Ni system, Acta Metallurgica 33 (8) (1985) 1369-1380.
    [13] L.L. Hench, J.K. West, The sol-gel process, Chemical Reviews 90 (1) (1990) 33-72.
    [14] G.L. Messing, S.-C. Zhang, G.V. Jayanthi, Ceramic Powder Synthesis by Spray Pyrolysis, Journal of the American Ceramic Society 76 (11) (1993) 2707-2726.
    [15] T. Masui, K. Fujiwara, K.-i. Machida, G.-y. Adachi, T. Sakata, H. Mori, Characterization of Cerium(IV) Oxide Ultrafine Particles Prepared Using Reversed Micelles, Chemistry of Materials 9 (10) (1997) 2197-2204.
    [16] M. Hirano, T. Miwa, M. Inagaki, Effect of the Presence of Ammonium Peroxodisulfate on the Direct Precipitation of Ceria and Ceria–Zirconia Solid Solutions from Acidic Aqueous Solutions, Journal of the American Ceramic Society 84 (8) (2001) 1728-1732.
    [17] K. Kaneko, K. Inoke, B. Freitag, A.B. Hungria, P.A. Midgley, T.W. Hansen, J. Zhang, S. Ohara, T. Adschiri, Structural and Morphological Characterization of Cerium Oxide Nanocrystals Prepared by Hydrothermal Synthesis, Nano Letters 7 (2) (2007) 421-425.
    [18] C.-Y. Chen, T.-K. Tseng, C.-Y. Tsay, C.-K. Lin, Formation of Irregular Nanocrystalline CeO2 Particles from Acetate-Based Precursor via Spray Pyrolysis, J. of Materi Eng and Perform 17 (1) (2008) 20-24.
    [19] S.-J. Shih, Y.-Y. Wu, C.-Y. Chen, C.-Y. Yu, Controlled Morphological Structure of Ceria Nanoparticles Prepared by Spray Pyrolysis, Procedia Engineering 36 (0) (2012) 186-194.
    [20] T.C. Pluym, Q.H. Powell, A.S. Gurav, T.L. Ward, T.T. Kodas, L.M. Wang, H.D. Glicksman, Solid silver particle production by spray pyrolysis, Journal of Aerosol Science 24 (3) (1993) 383-392.
    [21] T.C. Pluym, T.T. Kodas, L.-M. Wang, H.D. Glicksman, Silver-palladium alloy particle production by spray pyrolysis, Journal of Materials Research 10 (07) (1995) 1661-1673.
    [22] P.S. Patil, Versatility of chemical spray pyrolysis technique, Materials Chemistry and Physics 59 (3) (1999) 185-198.
    [23] C. Naşcu, I. Pop, V. Ionescu, E. Indrea, I. Bratu, Spray pyrolysis deposition of CuS thin films, Materials Letters 32 (2–3) (1997) 73-77.
    [24] J.P. Huang, Study on Morphology and Conductivity for Sm-doped Ceria by Spray Pyrolysis, in, Vol. Master, National Taiwan University of Science and Technology, 2012.
    [25] Y.H. S.-J. Shih, Y.-R. Lyu, C.-Y. Chen, Cross-sectional observation of yttrium and nickel oxide doped ceria powder, J. Nanosci. Nanotechnol (2009) 3898–3903.
    [26] L.-Y.S.C. S.-J. Shih, C.-Y. Chen, K.B. Borisenko, Nanoscale yttrium distribution in yttrium-doped ceria powder, J. Nanopart (2009) 2145–2152.
    [27] K.B.B. S.-J. Shih, L.-J. Liu, C.-Y. Chen, Multiporous ceria nanoparticles prepared by spray pyrolysis, J. Nanopart (2010) 1553–1559.
    [28] D.S. Jung, H.Y. Koo, Y.C. Kang, Composite conducting powders with core–shell structure as the new concept of electrode material, Colloids and Surfaces A: Physicochemical and Engineering Aspects 360 (1–3) (2010) 69-73.
    [29] S.-J. Shih, Y.-Y. Wu, Y.-J. Chou, K.B. Borisenko, Nanoscale control of composition in cerium and zirconium mixed oxide nanoparticles, Materials Chemistry and Physics 135 (2–3) (2012) 749-754.
    [30] S.-J. Shih, G. Li, D.J.H. Cockayne, K.B. Borisenko, Mechanism of dopant distribution: An example of nickel-doped ceria nanoparticles, Scripta Materialia 61 (8) (2009) 832-835.
    [31] I. Radev, K. Koutzarov, E. Lefterova, G. Tsotridis, Influence of failure modes on PEFC stack and single cell performance and durability, International Journal of Hydrogen Energy 38 (17) (2013) 7133-7139.
    [32] Air Products in AFC project to use surplus industrial hydrogen, Fuel Cells Bulletin 2013 (11) (2013) 6.
    [33] S. Ganguly, S. Das, K. Kargupta, D. Bannerjee, Optimization of Performance of Phosphoric Acid Fuel Cell (PAFC) Stack using Reduced Order Model with Integrated Space Marching and Electrolyte Concentration Inferencing, in: A.K. Iftekhar, S. Rajagopalan (Eds.) Computer Aided Chemical Engineering, Vol. Volume 31, Elsevier, 2012, pp. 1010-1014.
    [34] S. Kim, J.Y. Jung, H.H. Song, S.J. Song, K.Y. Ahn, S.M. Lee, Y.D. Lee, S. Kang, Optimization of molten carbonate fuel cell (MCFC) and homogeneous charge compression ignition (HCCI) engine hybrid system for distributed power generation, International Journal of Hydrogen Energy 39 (4) (2014) 1826-1840.
    [35] N. Kim, B.-H. Kim, D. Lee, Effect of co-dopant addition on properties of gadolinia-doped ceria electrolyte, Journal of Power Sources 90 (2) (2000) 139-143.
    [36] S.P.S. Badwal, K. Foger, Solid oxide electrolyte fuel cell review, Ceramics International 22 (3) (1996) 257-265.
    [37] M. Dokiya, SOFC system and technology, Solid State Ionics 152–153 (0) (2002) 383-392.
    [38] U.S.D.o. Energy, Fuel Cell Handbook by EG&G Technical Service Inc., (2004).
    [39] N.Q. Minh, Ceramic Fuel Cells, Journal of the American Ceramic Society 76 (3) (1993) 563-588.
    [40] S.C. Singhal, Advances in solid oxide fuel cell technology, Solid State Ionics 135 (1–4) (2000) 305-313.
    [41] Y. Teraoka, T. Nobunaga, K. Okamoto, N. Miura, N. Yamazoe, Influence of constituent metal cations in substituted LaCoO3 on mixed conductivity and oxygen permeability, Solid State Ionics 48 (3–4) (1991) 207-212.
    [42] T. Ishihara, H. Matsuda, Y. Takita, Doped LaGaO3 Perovskite Type Oxide as a New Oxide Ionic Conductor, Journal of the American Chemical Society 116 (9) (1994) 3801-3803.
    [43] N. Ramadass, ABO3-type oxides—Their structure and properties—A bird's eye view, Materials Science and Engineering 36 (2) (1978) 231-239.
    [44] C.-W. Huang, Electrical properties and microstructure of cerium oxide electrolytes produced by two-step sintering, (2013).
    [45] E.D. Wachsman, G.R. Ball, N. Jiang, D.A. Stevenson, Structural and defect studies in solid oxide electrolytes, Solid State Ionics 52 (1–3) (1992) 213-218.
    [46] R. Chockalingam, V.R.W. Amarakoon, H. Giesche, Alumina/cerium oxide nano-composite electrolyte for solid oxide fuel cell applications, Journal of the European Ceramic Society 28 (5) (2008) 959-963.
    [47] B.C.H. Steele, Oxygen ion conductors and their technological applications, Materials Science and Engineering: B 13 (2) (1992) 79-87.
    [48] H. Li, C. Xia, M. Zhu, Z. Zhou, G. Meng, Reactive Ce0.8Sm0.2O1.9 powder synthesized by carbonate coprecipitation: Sintering and electrical characteristics, Acta Materialia 54 (3) (2006) 721-727.
    [49] H. Inaba, H. Tagawa, Ceria-based solid electrolytes - Review, Solid State Ionics 83 (1-2) (1996) 1-16.
    [50] T.S. Zhang, J. Ma, Y.Z. Chen, L.H. Luo, L.B. Kong, S.H. Chan, Different conduction behaviors of grain boundaries in SiO2-containing 8YSZ and CGO20 electrolytes, Solid State Ionics 177 (13–14) (2006) 1227-1235.
    [51] F.T. M. C. Steil, Densification of Yttria-Stabilized Zirconia, J. Electrochem. Soc. 144 (1997) 390-398.
    [52] M. Aoki, Y.-M. Chiang, I. Kosacki, L.J.-R. Lee, H. Tuller, Y. Liu, Solute Segregation and Grain-Boundary Impedance in High-Purity Stabilized Zirconia, Journal of the American Ceramic Society 79 (5) (1996) 1169-1180.
    [53] Z.-P. Li, T. Mori, G.J. Auchterlonie, J. Zou, J. Drennan, Direct evidence of dopant segregation in Gd-doped ceria, Applied Physics Letters 98 (9) (2011) 093104-093104-093103.
    [54] T. Sugiura, S. Itoh, T. Ooi, T. Yoshida, K. Kuroda, H. Minoura, Evolution of a skeleton structured TiO2 surface consisting of grain boundaries, Journal of Electroanalytical Chemistry 473 (1–2) (1999) 204-208.
    [55] C. Tian, S.-W. Chan, Ionic conductivities, sintering temperatures and microstructures of bulk ceramic CeO2 doped with Y2O3, Solid State Ionics 134 (1–2) (2000) 89-102.
    [56] J. Maier, Ionic conduction in space charge regions, Progress in Solid State Chemistry 23 (3) (1995) 171-263.
    [57] J. Maier, Defect chemistry and ionic conductivity in thin films, Solid State Ionics 23 (1) (1987) 59-67.
    [58] B. Li, X. Wei, W. Pan, Improved electrical conductivity of Ce0.9Gd0.1O1.95 and Ce0.9Sm0.1O1.95 by co-doping, International Journal of Hydrogen Energy 35 (7) (2010) 3018-3022.
    [59] R.A. Montalvo-Lozano, S.M. Montemayor, K.P. Padmasree, A.F. Fuentes, Effect of Ca2+ or Mg2+ additions on the electrical properties of yttria doped ceria electrolyte system, Journal of Alloys and Compounds 525 (0) (2012) 184-190.
    [60] Y.H. Cho, P.-S. Cho, G. Auchterlonie, D.K. Kim, J.-H. Lee, D.-Y. Kim, H.-M. Park, J. Drennan, Enhancement of grain-boundary conduction in gadolinia-doped ceria by the scavenging of highly resistive siliceous phase, Acta Materialia 55 (14) (2007) 4807-4815.
    [61] D.K. Kim, P.-S. Cho, J.-H. Lee, D.-Y. Kim, H.-M. Park, G. Auchterlonie, J. Drennan, Mitigation of Highly Resistive Grain-Boundary Phase in Gadolinia-Doped Ceria by the Addition of SrO, Electrochemical and Solid-State Letters 10 (5) (2007) B91-B95.
    [62] M.N. Rahaman, Sintering of ceramics, Taylor & Francis Group, 2007.
    [63] R.M. German, Sintering theory and practice, John Wiley & Sons, 1996.
    [64] S.J.L. Kang, Sintering densification, grain growth & microstructure, Elsevier, 2005.
    [65] S.Y. D. Wolf, Materials interfaces: atomic-level structure and properties, Chapman & Hall, 1992.
    [66] Z. Zhan, T.-L. Wen, H. Tu, Z.-Y. Lu AC Impedance Investigation of Samarium-Doped Ceria, Journal of The Electrochemical Society 148 (5) (2001) A427-A432.
    [67] S. Hui, J. Roller, S. Yick, X. Zhang, C. Deces-Petit, Y. Xie, R. Maric, D. Ghosh, A brief review of the ionic conductivity enhancement for selected oxide electrolytes, Journal of Power Sources 172 (2) (2007) 493-502.
    [68] L.S. Birks, Electron Probe Microanalysis, Wiley-Interscience, 1971.
    [69] J.G.a. others, Scanning Electron Microscopy and X-ray Microanalysis, 3rd ed ed., Springer Verlag, 2003.
    [70] C.B.C. David B.Williams Tansmission Electron Microscopy, 2009.
    [71] S.-Y. Yang, S.-G. Kim, Characterization of silver and silver/nickel composite particles prepared by spray pyrolysis, Powder Technology 146 (3) (2004) 185-192.
    [72] C.Y. Chen, T.K. Tseng, S.C. Tsai, C.K. Lin, H.M. Lin, Effect of precursor characteristics on zirconia and ceria particle morphology in spray pyrolysis, Ceramics International 34 (2) (2008) 409-416.
    [73] M.S.J. M.J. Moon Bull. Chem. Soc 59 (1986) 1215.
    [74] A.E. N.N. Greenwood, Chemistry of the Elements, Pergamon press, Oxford, 1986.
    [75] http://www.11467.com/180187.htm
    [76] http://www.basechem.org/chemical/26593
    [77] http://www.guidechem.com/dictionary/cn/16774-21-3.html
    [78] http://honwaygroup.com/?product=%E7%A1%9D%E9%85%B8%E9%87%A4-99-90

    QR CODE