簡易檢索 / 詳目顯示

研究生: 李多加
Duo-Jia Lee
論文名稱: 二氧化鈰中空球結構之 巨軌道順磁特性探討
Study of giant orbital paramagnetism of CeO2 hollow sphere structure
指導教授: 陳詩芸
Shih-Yun Chen
口試委員: 郭東昊
Dong-Hau Kuo
駱芳鈺
Fang-Yu Hlo
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 111
中文關鍵詞: 巨軌道順磁模型磁性缺陷中空球二氧化鈰
外文關鍵詞: giant orbital paramagnetic model, magnetism, defects, hollow spheres, CeO2
相關次數: 點閱:308下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究首先利用水熱法製作出特定大小的碳球,再使用溶膠凝膠法將二氧化鈰奈米顆粒包覆在碳球上,得到不同厚度的二氧化鈰殼層,並利用煆燒進一步調查二氧化鈰中空球之殼層結構。合成的樣品以X光繞射儀、拉曼光譜、原子力顯微鏡、穿透式電子顯微鏡、X光吸收光譜進行結構分析,結合磁性量測結果,建立中空結構與磁性之關聯。


    In this study, the carbon spheres of a specific size were prepared by hydrothermal method, and then sol-gel method was used to coat cerium oxide nanoparticles on the carbon spheres to obtain CeO2 shells with different thicknesses. Then, further investigation was carried out by annealing to get the CeO2 hollow sphere. The synthesized samples were analyzed by X-ray diffraction, Raman spectroscopy, atomic force microscope, transmission electron microscope, X-ray absorption spectroscopy, and combined with the magnetic measurement results to establish the correlation between hollow structure and magnetism.

    摘要 I Abstract III 致謝 V 目錄 VI 圖目錄 VIII 表目錄 X 第一章 緒論 1 1.1 前言 1 1.2 研究動機 2 第二章 文獻回顧 3 2.1 稀磁性半導體 3 2.1.1 稀磁性半導體簡介 3 2.1.2 稀磁性半導體磁性機制來源 4 2.2 二氧化鈰介紹 14 2.2.1 材料結構介紹 14 2.2.2 二氧化鈰磁性介紹 16 2.2.3 二氧化鈰中空球製備 20 2.2.4 碳材介紹 23 2.2.5碳球製備 23 第三章 實驗方法與儀器介紹 26 3.1 碳球及二氧化鈰奈米顆粒之製備 26 3.1.1 藥品及氣體 26 3.1.2 碳球製備流程 26 3.1.3 不同厚度二氧化鈰包覆碳(CeO2@C)製備流程 27 3.1.4 還原氣氛下不同溫度退火之CeO2@C 30 3.1.5 空氣下不同溫度煆燒之CeO2@C 30 3.2 X光繞射分析 31 3.3 Raman 光譜分析 32 3.4 SEM影像分析 35 3.5 X吸收光譜分析 36 3.5.1XANES介紹 36 3.5.2 XANES光譜分析 38 3.6穿透式電子顯微鏡 42 3.6.1 穿透式電子顯微鏡量測 42 3.6.2電子顯微鏡之樣品製備 44 3.7 AFM分析 46 3.8 VSM分析 47 第四章 結果與討論 49 4.1持溫時間與碳球之粒徑大小之研究 49 4.2二氧化鈰分散及球殼厚度及與磁性關連之研究 51 4.2.1 XRD分析 51 4.2.2 TEM影像分析 52 4.2.3 AFM影像分析 55 4.2.4 Raman光譜分析 56 4.2.5 XANES光譜分析 59 4.2.6 VSM磁性分析 62 4.2.7綜合討論 64 4.3二氧化鈰還原與磁性關連之研究 65 4.3.2 TEM影像分析 66 4.3.3 AFM影像分析 70 4.3.4 Raman光譜分析 71 4.3.5 XANES光譜分析 74 4.3.6 VSM磁性分析 78 4.3.7綜合討論 79 4.4二氧化鈰煆燒與磁性關連之研究 80 4.4.1 XRD分析 80 4.4.2 SEM影像分析 82 4.4.3 TEM影像分析 84 4.4.4 Raman光譜分析 86 4.4.5 XANES光譜分析 89 4.4.6 VSM磁性分析 92 4.4.7綜合討論 93 第五章 結論 94 參考文獻 95

    [1] Michael Coey, Collective magnetic response of CeO2 nanoparticles. Nature Phys 12, 694–699, (2016).
    [2] Siddhartha Sen, Mesoscopic structure formation in condensed matter due to vacuum fluctuations, PhysRevB.92, 155115, (2015).
    [3] N. Zheng, introduction to dilute magnetic semiconductors, Solid State II, (2008).
    [4] K. C. Ku, Highly enhanced Curie temperature in low-temperature annealed [Ga,Mn]As epilayers, Appl. Phys. Lett., 82, pp2302-2304, (2003).
    [5] H. Munekata , Diluted Magnetic III-V Semiconductors, Phys. Rev. Lett. 63, 1849 (1989).
    [6] H. Ohno, (Ga,Mn)As: A new diluted magnetic semiconductor based on GaAs, Appl. Phys. Lett. 69, 363, (1996).
    [7] Karl Ackland, Room temperature magnetism in CeO2—A review, Physics Reports 746 1–39, (2018).
    [8] T. Dietl, Zener Model Description of Ferromagnetism in Zinc-Blende Magnetic Semiconductors, Science, vol. 287, pp. 1019-1022, February 11, (2000).
    [9] J. M. D. Coey, Donor impurity band exchange in dilute ferromagnetic oxides, Nat Mater, vol. 4, pp. 173-179, (2005).
    [10] A. Trovarelli, Catalytic Properties of Ceria and CeO2-Containing Materials, Catalysis Reviews, vol. 38, pp. 439-520, (1996).
    [11] N. Izu, W. Shin, and N. Murayama, Fast response of resistive-type oxygen gas sensors based on nano-sized ceria powder, Sensors and Actuators B: Chemical, vol. 93, pp. 449-453, (2003).
    [12] N. M. Sammes and Z. Cai, Ionic conductivity of ceria/yttria stabilized zirconia electrolyte materials, Solid State Ionics, vol.100, pp.39-44, (1997).
    [13] J. C. G.Bϋnzli, Handbook on the Physics and Chemistry of Rare Earths,North-Holland, New York, Vol. 3, (1984).
    [14] N. B. Kirk, The effect of the calcination process on the crystallite shape of sol-gel cerium oxide used for glass polishing, Journal of Materials Science, vol. 30, pp. 2171-2175, (1995).
    [15] M. Sugiura, Oxygen Storage Materials for Automotive Catalysts: Ceria-Zirconia Solid Solutions, Catalysis Surveys from Asia, vol. 7, pp. 77-87, (2003).
    [16] L. Yinglin, Size dependent ferromagnetism in cerium oxide (CeO2 ) nanostructures independent of oxygen vacancies, Journal of Physics: Condensed Matter, vol. 20, p. 165201, (2008).
    [17] C. Xiaobo, Synthesis and room-temperature ferromagnetism of CeO2 nanocrystals with nonmagnetic Ca2+ doping," Nanotechnology, vol. 20, p. 115606, (2009).
    [18] A. Sundaresan, Ferromagnetism as a universal feature of nanoparticles of the otherwise nonmagneticoxides, Phys. Rev. B 74 161306, (2006).
    [19] Michael Coey, Collective magnetic response of CeO2 nanoparticles, Nature Phys 12, 694–699, (2016).
    [20] V. Fernandes, Anisotropy of magnetization and nanocrystalline texture in electrodeposited CeO2 Films, Electrochem. Solid-State Lett. 14, (2011).
    [21] V. Fernandes, Ferromagnetism induced by oxygen and cerium vacancies above the percolation limit in CeO2, J. Phys.: Condens. Matter 22 , 216004, (2010).
    [22] Eric Nestor Tseng, Magnetism and plasmonic performance of mesoscopic hollow ceria spheres decorated with silver nanoparticles, Nanoscale, 11, 3574, (2019).
    [23] Huarui Xu, Synthesis of Solid, Spherical CeO2Particles Prepared by the Spray Hydrolysis Reaction Method, J. Am. Ceram. Soc., 85 [1] 139–44 ,(2002).
    [24] 陳泓傑, CeO2中空球之殼層結構與其磁性之關聯性研究
    [25] Xingmei Guo, Synthesis and characterization of carbon sphere-silica core–shell structure and hollow silica spheres, Colloids and Surfaces A: Physicochem. Eng. Aspects 345 141–146, (2009).
    [26] Zhiyan Guo, A simple method to controlled synthesis of CeO2 hollow microspheres, Scripta Materialia 61 48–51, (2009).
    [27] D.Kéomany, Sol gel preparation of mixed cerium—titanium oxide thin films, Solar Energy Materials and Solar Cells Volume 33, Issue 4, Pages 429-441, (1994).
    [28] P. Periyat, A facile aqueous sol–gel method for high surface area nanocrystalline CeO2, RSC Advances , 1, 1794–1798, (2011).
    [29] Weijun Deng, Synthesis of monodisperse CeO2 hollow spheres with enhanced photocatalytic activity, Ceramics International41, 11570–11575, (2015).
    [30] F. Caruso, Nanoengineering of Inorganic and Hybrid Hollow Spheres by Colloidal Templating, Science 282, (1998).
    [31] R.A. Caruso, Nanocasting and Nanocoating, In: Antonietti M. (eds) Colloid Chemistry I. Topics in Current Chemistry, vol 226 ,(2003) .
    [32] Ian A. S. Edwards, Introduction to Carbon Science ,(2013).
    [33] Bo-Tao Zhang, Application of carbon-based nanomaterials in sample preparation, A review, Analytica Chimica Acta, Volume 784, Pages 1-17, (2013).
    [34] J.B. Joo, Simple synthesis of graphitic porous carbon by hydrothermal method for use as a catalyst support in methanol electro-oxidation. Catal. Commun. 10, 267, (2008).
    [35] P.M. Ajayan, Nanotubes from carbon. Chem. Rev. 99, 1787 (1999).

    [36] J.P. Salvetat, Mechanical properties of carbon nanotubes, Appl. Phys. A 69, 255–260, (1999).
    [37] T. Otowa, Development of KOH activated high surface area carbon and its application to drinking water purification, Carbon, Volume 35, Issue 9, Pages 1315-1319, ISSN 0008-6223, (1997).
    [38] A.L.M. Reddy, Synthesis and characterization of magnetic metal-encapsulated multi-walled carbon nanobeads, Nanoscale Res. Lett. 3, 76, (2008).
    [39] Mohammad Mehdi Sabzehmeidani, Carbon based materials, a review of adsorbents for inorganic and organic compounds, Mater. Adv., 2, 598, (2021).
    [40] J.B. Joo, Simple synthesis of graphitic porous carbon by hydrothermal method for use as a catalyst support in methanol electro-oxidation. Catal. Commun. 10, 267, (2008).
    [41] C. Falco, Morphological and structural differences between glucose, cellulose and lignocellulosic biomass derived hydrothermal carbons, Green Chem., 13, 3273, (2011).
    [42] Min Li, Control of the morphology and chemical properties of carbon spheres prepared from glucose by a hydrothermal method. J. Mater. Res., Vol. 27, No. 8, Apr 28, (2012).
    [43] Xiaoming Sun, Colloidal Carbon Spheres and Their Core/Shell Structures with Noble-Metal Nanoparticles. Angew. Chem., 116, 607 –611, (2004).
    [44] Dr. Jian Liu, Extension of The Stöber Method to the Preparation of Monodisperse Resorcinol–Formaldehyde Resin Polymer and Carbon Spheres, Angewandte ChemieVolume 123, Issue 26 p. 6069-6073, (2011).
    [45] S. Chandra Kishore,Direct synthesis of solid and hollow carbon nanospheres over NaCl crystals using acetylene by chemical vapour deposition,Applied Surface Science,Volume 400, Pages 90-96,ISSN 0169-4332, (2017).
    [46] H.S. Qian, Non-catalytic CVD preparation of carbon spheres with a specific size, Carbon, 42, p. 76, (2004)
    [47] Warren, B.E., X-ray Diffraction, (1990).
    [48] A. L. Patterson, "The Scherrer Formula for X-Ray Particle Size Determination,"
    Physical Review, vol. 56, pp. 978-982, (1939).
    [49] Paul Rostron, Raman Spectroscopy Review, International Journal of Engineering and Technical Research (IJETR) ISSN: 2321-0869, (2016).
    [50] Joseph Goldstein, Scanning Electron Microscopy and X-ray Microanalysis, , Plenum Publishers, (2003).
    [51] B. Skårman, Morphology and Structure of CuOx/CeO2 Nanocomposite Catalysts
    Produced by Inert Gas Condensation: An HREM, EFTEM, XPS, and High-Energy Diffraction Study, Chemistry of Materials, vol. 14, pp. 3686-3699, (2002).

    [52] W.-C. Tsai, Structural and electrical properties of cerium dioxide films grown by RF magnetron sputtering, Journal of Materials Science: Materials in Electronics, vol. 8, pp. 313-320, (1997).
    [53] B. K. Teo, EXAFS , Basic Principle and Data Analysis, Springer-Verlag, Berlin, (1986).
    [54] Keyse, R., Introduction to scanning transmission electron microscopy, Routledge, (2018).
    [55] 林智仁, 場發射穿透式電子顯微鏡簡介. 工業材料雜誌, 201: p. 90-98,(2003).
    [56] Egerton, R.F., Electron Energy-Loss Spectroscopy in the Electron Microscope, Springer Science & Business Media, (2011).
    [57] G. Binnig, Atomic Force Microscop, PHYSICAL REVIEW LETTERS, VOLUME 56, NUMBER 9, (1986).
    [58] Z. V. Popović, Raman scattering on nanomaterials and nanostructures, Annalen der Physik, vol. 523, pp. 62-74, (2011)
    [59] ferrari a.c., Raman spectroscopy of amorphous, nanostructured, diamond-like carbon, and nanodiamond, philos. t. r. soc. a, 362 (2004).
    [60] ANNA DYCHALSKA1, Study of CVD diamond layers with amorphous carbon admixture by Raman scattering spectroscopy, Materials Science-Poland DOI: 10.1515/msp-2015-0067
    [61] A. S. Saleemi, Structure dependent negative magnetoresistance of amorphous carbonthin films, Diamond & Related Materials 72 108–113, (2017).
    [62] Hong W J, Effect of Mn content on physical properties of CeOx-MnOy support and BaO-CeOx-MnOy catalysts for direct NO decomposition. J. Catal., 277(2): 208,(2011).
    [63] L. A. J. Garvie, Determination of Ce4+/Ce3+ in electron-beam-damaged CeO2 by electron energy-loss spectroscopy, Journal of Physics and Chemistry of Solids, vol. 60, pp. 1943-1947, (1999).
    [64] P. Nachimuthu, Journal of Solid State Chemistry 149, 408, (2000)
    [65] Floriana Vindigni, Surface and Inner Defects in Au/CeO2 WGS Catalysts: Relation between Raman Properties, Reactivity and Morphology, Chemistry - A European Journal, DOI: 10.1002/chem.201003214 , (2011).

    無法下載圖示 全文公開日期 2031/09/08 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE