簡易檢索 / 詳目顯示

研究生: 何享穎
Hsiang-ying He
論文名稱: MeO2 (Me= Ti, Zr)摻雜Bi2O3固態電解質之材料特性與熱化學穩定性評估
Material characteristics and thermochemical stability assessment of MeO2 (Me= Ti, Zr) doped Bi2O3 solid state electrolyte
指導教授: 郭俞麟
Yu-lin Kuo
口試委員: 韋文誠
Wen-cheng Wei
施劭儒
Shan-ju Shih
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 95
中文關鍵詞: 氧化鉍固態氧化物燃料電池熱化學穩定性氧化鈦氧化鋯
外文關鍵詞: Bi2O3, Solid oxide fuel cells (SOFC), thermochemical stability, TiO2, ZrO2
相關次數: 點閱:283下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

氧化鉍基固態電解質材擁有最佳導電度被認為可以應用於中溫型固態氧化物燃料電池(IT-SOFCs)電解質的潛力。研究指出升降溫時可能發生相變化,導致降低材料的離子導電性。為了要在室溫下穩定高溫相(δ相),文獻提出在一溫度範圍內維持導電性的可能方法,可以透過摻雜異價數陽離子摻雜物,如TiO2、SnO2、ZrO2、TeO2和Nb2O5,較知名為Y2O3、Er2O3等稀土元素。然而氧化鉍基固態電解質材料中最大的挑戰在SOFC的操作條件下,會與燃料端的還原氣氛發生還原反應而導致離子傳導性喪失。本研究中以MeO2 (Me: Ti, Zr)摻雜氧化鉍系固態電解質為主,探討對其材料性質及結構穩定性的影響,並分為兩個主題:(1) 固態氧化物材料性質量測 和(2) 固態電解質之熱化學穩定性評估。
本研究中,在二元系統Bi2O3-TiO2與Bi2O3-ZrO2,利用行星球磨製備不同TiO2摻雜Bi2O3混合漿料溶液,藉由減壓濃縮去除溶劑獲得之乾燥粉末經由鍛燒與在大氣下燒結後,XRD結果顯示隨著TiO2摻雜濃度增加,Bi2O3的a軸與c軸晶格常數變大,並且具有良好之緻密度(> 95% T.D.)。電性方面量測,在大氣下400~700°C利用兩極式直流量測,結果顯示,TiO2摻雜Bi2O3摻雜量為1 mol% (1BTO)會有最佳之導電度σ600℃=9.00×10-4 Scm-1,但離目標傳統電解質材料YSZ還有段落差。在熱化學穩定性方面,藉由熱重分析儀分別通入CH4與H2還原氣氛評估固態電解質,結果顯示在CH4氣氛下,以TiO2摻雜Bi2O3摻雜量為14.3 mol% (14BTO)具有最佳的穩定性,然而在H2氣氛下,氧化鉍基固態電解質都快速發生還原反應。此外,14BZO還原氧化反應後,XRD結果顯示Bi7.38Zr0.62O12.31為介穩相。


Bi2O3-based solid-state electrolyte materials with the best conductivity showed the potential to be applied as electrolyte layer for intermediate temperature solid oxide fuel cells (IT-SOFCs). Investigations reported that doped-Bi2O3 might occur phase transformations during heating or cooling to degrade it ionic conductivity. In order to stabilize the high temperature phase (δ-phase or cubic phase) in room temperature, many reports addressed the possible routes to maintain the conductivity properties in a temperature range. For example, the addition of various alio-valent cationic dopants, such as TiO2, SnO2, ZrO2, TeO2 and Nb2O5, is the one of effective ways to achieve the goal, especially Y2O3 and ErO2 of the famous dopants. However, one of the troublesome problems of Bi2O3-based solid-state electrolyte materials which were reduced in the fuel side to losing it ionic conductivity in the SOFC operating conditions. This study focused on material characteristics and thermochemical stability of TiO2-doped Bi2O3 and ZrO2-doped Bi2O3 solid-state electrolytes, and it divided into two subjects: (1) material characteristics of solid-state electrolyte and (2) thermochemical stability assessment of solid-state electrolyte.
In binary system of Bi2O3-TiO2 and Bi2O3-ZrO2, this study was prepared TiO2-doped Bi2O3 slurry by planetary ball milling, and then used vacuum evaporator to obtain the starting powder. After calcining and sintering in the air, XRD results indicated lattice constants of the prepared powder of Bi2O3 increased at a-axis and c-axis as the dopant of TiO2. The sintering sample showed relatively high density (> 95.0% T.D.) by Archimedes method. Electrical behaviors were measured by two-probe DC method in air. As sintering at 770°C for 2hrs, the highest total conductivities were obtained in 1 mol% doped Bi2O3 (1BTO) with σ600℃=9.00×10-4 Scm-1, but the result was still lower than YSZ. In thermochemical stability measurement, redox reaction of the prepared electrolyte was carried by TGA measurement under CH4 and H2 atmosphere, respectively. The 14BTO represented the best stability under CH4 atmosphere compared with Bi2O3 and 14BZO. However, Bi2O3-based solid electrolyte occurred fast reducible reaction in H2 atmosphere. In addition, after redox reaction of 14BZO, XRD results indicated the Bi7.38Zr0.62O12.31 was metastable phase.

致謝................................................................................................................................... I 中文摘要...........................................................................................................................II 英文摘要.........................................................................................................................III 目錄..................................................................................................................................V 圖索引..........................................................................................................................VIII 表索引............................................................................................................................XII 第一章 緒論 1.1 前言............................................................................................................................1 1.2 燃料電池簡介............................................................................................................3 1.3 研究動機....................................................................................................................4 1.4 研究方式....................................................................................................................7 第二章 文獻回顧 2.1 燃料電池....................................................................................................................8 2.1.1 燃料電池介紹.................................................................................................8 2.1.2 各種燃料電池簡介.........................................................................................8 2.2 固態氧化物燃料電池 2.2.1 固態氧化物燃料電池簡介...........................................................................13 2.2.2 固態氧化物燃料電池之工作原理...............................................................15 2.2.3 SOFCs燃料電池的處理-內部重整...............................................................16 2.2.4 SOFCs陰極材料............................................................................................17 2.2.5 SOFCs陽極材料............................................................................................18 2.2.6 固態電解質材料...........................................................................................19 2.2.7 雙極連接材料...............................................................................................20 2.3 固態電解質種類 2.3.1 鈣鈦礦結構固態電解質...............................................................................21 2.3.2 磷灰石結構固態電解質...............................................................................21 2.3.3 螢石結構固態電解質...................................................................................22 2.3.3.1 氧化鋯固態電解質............................................................................24 2.3.3.2 氧化鈰固態電解質............................................................................25 2.3.3.3 氧化鉍固態電解質............................................................................26 2.4 固態電解質合成與製備方法..................................................................................38 2.5 X光繞射定量理論....................................................................................................39 2.6 固態電解質之熱穩定性與化學穩定性..................................................................40 第三章 實驗設備與程序 3.1 實驗藥品與耗材......................................................................................................43 3.2 實驗步驟..................................................................................................................43 3.3 材料性質分析..........................................................................................................46 3.3.1 阿基米德法...................................................................................................46 3.3.2 X光繞射儀.....................................................................................................47 3.3.3 場發射掃描式電子顯微鏡...........................................................................47 3.3.4 電性量測.......................................................................................................48 3.3.5 熱重分析儀...................................................................................................48 第四章 結果與討論 4.1以球磨法製備TiO2摻雜Bi2O3與ZrO2摻雜Bi2O3之二元系統..............................50 4.1.1 起始材料分析...............................................................................................51 4.1.2 起始粉末與球磨時間之粒徑分布...............................................................53 4.1.3 Bi12TiO20與Bi2O3粉末混合之XRD定量結果.............................................56 4.1.4 二氧化鈦(TiO2)摻雜三氧化二鉍(Bi2O3)粉體之材料分.............................57 4.1.5 二氧化鋯摻雜三氧化二鉍之鍛燒粉末分析...............................................64 4.2 不同濃度二氧化鈦摻雜氧化鉍之燒結體與導電性之量測..................................65 4.2.1二氧化鈦(TiO2)摻雜三氧化二鉍(Bi2O3)之燒結體分析..............................66 4.2.2二氧化鈦(TiO2)摻雜三氧化二鉍(Bi2O3)之燒結體電性量測......................69 4.3 熱化學穩定性評估..................................................................................................73 4.3.1 還原氧化之熱化學穩定性分析...................................................................73 4.3.2 還原8小時之熱化學穩定性分析................................................................82 第五章 結論...................................................................................................................86 第六章 參考文獻...........................................................................................................87

1. 黃鎮江,燃料電池,全華科技圖書 (2004)
2. http://www.moeaboe.gov.tw/oil102/
3. Taiwan Environmental Information Center (http://e-info.org.tw/node/28254)
4. Jeff Tollefson, “Countries with highest CO2-emitting power sectors (tones per year)”, Nature, Vol. 450, pp. 327 (2007)
5. J. Larminie and A. Dicks, “Fuel Cell Systems Explained” Chichester, West Sussex : Wiley 2ed. (2003)
6. Brian C. H. Steele, Angelika Heinzel, “Materials for fuel-cell technology”, Nature, Vol. 414, pp. 345-352 (2001)
7. Ballard Co.
8. H. Inaba, H. Tagawa, “Ceria-based solid electrolytes”, Solid State Ionics, Vol. 83 pp. 1-16 (1996)
9. E. D. Wachsman, G. R. Ball, N. Jiang, D. A. Stevenson, “Structural and Defect Studies in Solid Oxide Electrolyte”, Solid State Ionics, Vol. 52, pp. 213-218 (1992)
10. 溫武義,燃料電池技術,全華科技圖書 (2004)
11. 趙中興、王曉紅、黃宏,燃料電池基礎,全華科技圖書 (2008)
12. 肖鋼,燃料電池技術,全華科技圖書 (2010)
13. http://www.seca.doe.gov
14. M.B. Phillipps , N.M. Sammes , O. Yamamoto, “Gd1-xAxCo1-yMnyO3 (A=Sr, Ca) as a cathode for the SOFC”, Solid State Ionics, Vol. 123, pp. 131-138 (1999)
15. B. C. H. Steele, “Appraisal of Ce1-yGdyO2-y/2 electrolytes for IT-SOFC operation at 500°C” , Solid State Ionics, Vol. 129, pp. 95-110 (2000)
16. Ze Lei, Qingshan Zhu, Li Zhao, “Low temperature processing of interlayer-free La0.6Sr0.4Co0.2Fe0.8O3-δ cathodes for intermediate temperature solid oxide fuel cells”, Journal of Power Sources, Vol. 161, pp. 1169-1175 (2006)
17. Hae Jin Hwang, Ji-Woong Moon, Seunghun Lee, Eun A Lee, “Electrochemical performance of LSCF-based composite cathodes for intermediate temperature SOFCs”, Journal of Power Sources, Vol. 145, pp. 243-248 (2005)
18. Hae Jin Hwang, Ji-Woong Moon, Masanobu Awano, ” Fabrication of novel type solid electrolyte membrane reactors for exhaust gas purification”, Journal of the European Ceramic Society, Vol. 24, pp. 1325-1328 (2004)
19. J.M. Ralph, A.C. Schoeler, M. Krumpelt, “Materials for lower temperature solid oxide fuel cells”, Journal of Materials Science, Vol. 36, pp. 1161-1172 (2001)
20. B.C.H. Steele, K.M. Hori, S. Uchino, “Kinetic parameters influencing the performance of IT-SOFC composite electrodes”, Solid State Ionics, Vol. 135, pp. 445-450 (2000)
21. M.T. Colomer , B.C.H. Steele, J.A. Kilner, “Structural and electrochemical properties of the Sr0.8Ce0.1Fe0.7Co0.3O3-δ perovskite as cathode material for ITSOFCs”, Solid State Ionics, Vol. 147, pp. 41-48 (2002)
22. A.N. Petron, O.F. Kononchuk, A.V. Cherepanov, P. Kofstad, “Crystal structure, electrical and magnetic properties of La1-xSrxCoO3-y”, Solid State Ionics, Vol. 80, pp. 189-199 (1995)
23. L.W. Tai, M.M. Nasrallah, H.U. Anderson, D.M. Sparlin, S.R. SehinL.W. Tai, M.M. Nasrallah, H.U. Anderson, D.M. Sparlin, S.R. Sehin, “Structure and electrical properties of LaxSr1-xCoyFe1-yO3. Part 1. The system LaxSr1-xCoyFe1-yO3”, Solid State Ionics, Vol. 76, pp. 259-271 ( 1995)
24. J. Li, S. Wang, R. Liu, Z. Wang, J.Q. Qian, “Electrochemical performance of (Bi2O3)1-x(Er2O3)x-Ag composite material for intermediate temperature solid oxide fuel cell cathode”, Solid State Ionics, Vol. 179, pp. 1597-1601 (2008)
25. L. Zhang, S. P. Jiang, W. Wang, Y. Zhang, “NiO/YSZ, anode-supported, thin-electrolyte, solid oxide fuel cells fabricated by gel casting”, Journal of Power Sources, Vol. 170, pp. 55-60 (2007)
26. S. Zha, W. Rauch, M. Liu, “Ni-Ce0.9Gd0.1O1.95 anode for GDC electrolyte-based low-temperature SOFCs” , Solid State Ionics, Vol. 166, pp. 241-250 (2004)
27. C. M. Finnerty, R. M. Ormerod, “Internal reforming over nickel/zirconia anodes in SOFCS oparating on methane: influence of anode formulation, pre-treatment and operating conditions”, Journal of Power Sources, Vol. 86, pp. 390-394 (2000)
28. M. Mogensen, N.M. Sammes, G.A. Tompsett, “Physical, chemical and electrochemical properties of pure and doped ceria”, Solid State Ionics, Vol. 129, pp. 63-94 (2000)
29. T. Tsai, S.A. Barnett, “Effect of Mixed-Conducting Interfacial Layers on Solid Oxide Fuel Cell Anode Performance”, Journal of the Electrochemical Society, Vol. 145, pp. 1696-1701 (1998)
30. H. Uchida, H. Suzuki, M. Watanabe, “High-Performance Electrode for Medium-Temperature Solid Oxide Fuel Cell”, Journal of the Electrochemical Society, Vol. 145, pp. 615-620 (1998)
31. E. W. Park, H. Moon, M. S. Park, S. H. Hyun, “Fabrication and characterization of Cu–Ni–YSZ SOFC anodes for direct use of methane via Cu-electroplating”, International Journal of Hydrogen Energy, Vol. 34, pp. 5537-5545 (2009)
32. A. Rizea, D. Chirlesan, C. Petot, G. Petot-Ervas, “The influence of alumina on the microstructure and grain boundary conductivity of yttria-doped zirconia”, Solid State Ionics, Vol. 146, pp.341-353 (2002)
33. Y. Liu, L. E. Lao, “Structural and electrical properties of ZnO-doped 8 mol% yttria-stabilized zirconia”, Solid State Ionics, Vol. 177, pp. 159-163 (2006)
34. A. B. Stambouli and E. Traversa, “Solid oxide fuel cells (SOFCs): a review of an environmentally clean and efficient source of energy”, Renewable & Sustainable Energy Reviews, Vol. 6, pp. 433-455 (2002)
35. H. Huang, M. Nakamura, P. Su, R. Fasching, Y. Saito, F. B. Prinz, “High-Performance Ultrathin Solid Oxide Fuel Cells for Low-Temperature Operation”, Journal of the Electrochemical Society, Vol. 154, pp. B20-B24 (2007)
36. K. Huang and J. B. Goodenough, “A solid oxide fuel cell based on Srand Mg-doped LaGaO3 electrolyte: the role of a rare-earth oxide buffer”, Journal of Alloys and Compounds, Vol. 303-304, pp. 454-464 (2000)
37. T. Ishihara, H. Matsuda, and Y. Takita, “Doped LaGaO3 Perovskite Type Oxide as a New Oxide Ionic Conductor”, Journal of the American Chemical Society, Vol. 116, pp. 3801-3803 (1994)
38. S. Nakayama,T. Kageyama, H. Aono and Y. Sadaoka, “Ionic Conductivity of Lanthanoid Silicates, Ln10(SiO4)6O3, (Ln = La, Nd, Sm, Gd, Dy, Y, Ho, Er and Yb)”, Journal of Materials Chemistry, Vol. 5, pp. 1801-1805 (1995)
39. S. Nakayama and M. Sakamoto, "Electrical Properties of New Type High Oxide Ionic Conductor RESi6O27”, Journal of Materials Chemistry, Vol. 18, pp. 1413-1418 (1998)
40. United States Patent No. 7128995.
41. K. Bundschuh and M. Schutze, “Materials for temperatures above 1500 ℃ in oxidizing atmospheres. Part I: Basic considerations on materials selection”, Materials and Corrosion, Vol. 52, pp. 204-212 (2001)
42. S. M. Haile, “Fuel cell materials and components”, Acta Materialia, Vol. 51, pp. 5981-6000 (2003)
43. Y. M. Chiang, D. Birnie and W. D. Kingery, “Physical Ceramics”, New York : J. Wiley (1997).
44. 陳誦英、王峰雲、鄭淑芬,固體氧化物燃料電池(SOFC)研究進展和發展動態,財團法人中技社 (2003)
45. M. Yashima, M. Kakihana and M. Yoshimura, “Metastable-stable phase diagrams in the zirconia-containing systems utilized in solid-oxide fuel cell application”, Solid State Ionics, Vol. 86/88, pp. 1131-1149 (1996)
46. F. Kroger and H. J. Vink, “Solid State Physics”, Vol. 3, F. Seitz and D. Turnbull (Eds.), Academic Press, New York, pp. 304 (1965)
47. B. C. H. Steele, “Appraisal of Ce1-yGdyO2-y/2 electrolytes for IT-SOFC operation at 500 ℃,” Solid State Ionics, Vol. 129, pp. 95-110 (2000)
48. W. S. Jang and S. H. Hyun, “Preparation of YSZ/YDC and YSZ/GDC composite electrolytes by the tape casting and sol-gel dip-drawing coating method for low-temperature SOFC”, Journal of Materials Science, Vol. 37, pp. 2535-2541 (2002)
49. V. V. Kharton, F. M. B. Marques, A. Atkinson, “Transport properties of solid oxide electrolyte ceramics: a brief review”, Solid State Ionics, Vol. 174, pp. 135-149 (2004)
50. M. Matsuda, T. Hosomi, K. Murata, T. Fukui, M. Miyake, “Fabrication of bilayered YSZ/SDC electrolyte film by electrophoretic deposition for reduced-temperature operating anode-supported SOFC”, Journal of Power Sources, Vol. 165, pp. 102-107 (2007)
51. P. Shuk, H. D. Wiemhofer, U. Guth, W. Gopel, and M. Greenblatt, “Oxide ion conducting solid electrolytes based on Bi2O3”, Solid State Ionics, Vol. 89, pp. 179-196 (1996)
52. H. A. Harwig, A. G. Gerards, “The polymorphism of bismuth sesquioxide”, Thermochimica Acta, Vol. 28, pp. 121-131 (1979)
53. O. Joubert, A. Jouanneaux and M. Ganne, “Crystal Structure of Low-temperature form of Bismuth Vanadium Oxide Determined by Rietveld Refinement of X-ray and Neutron Diffraction Data”, Materials Research Bulletin, Vol. 29, pp. 175-184 (1994)
54. Bi¬2O3 polymorph phase with temperature and cooling rate (http://en.wikipedia.org/wiki/Bismuth(III)_oxide)
55. H. A. Harwig, “On the Structure of Bismuthsesquioxide: The α, β, γ, and δ-phase”, Zeitschrift fur anorganische und allgemeine Chemie, Vol. 444, pp.151-166 (1978).
56. P. Shuk, H. D. Wiemhofer, U. Guth, W. Gopel, and M. Greenblatt, “Oxide ion conducting solid electrolytes based on Bi2O3”, Solid State Ionics, Vol. 89, pp. 179-196 (1996)
57. A. Laarif and F. Theobald, “The lone pair concept and the conductivity of bismuth oxides Bi2O3”, Solid State Ionics, Vol. 21, pp. 183-193 (1986)
58. G. Mairesse, “In Fast Ion Transport in Solids,” ed. B. Scrosati, Kluver, Amsterdam pp. 271 (1993)
59. J. C. Boivin and D. J. Thomas, “ Structural investigations on bismuth-based mixed oxides”, Solid State Ionics, Vol. 3/4, pp. 457-462 (1981)
60. T. Takahashi, H. Iwahara and Y. Nagai, “ High oxide ion conduction in sintered bismuth oxide containing strontium oxide, calcium oxide, or lanthanum oxide”, Journal of Applied Electrochemistry, Vol. 2, pp. 97-104 (1972)
61. N. M. Sammes, G. A. Tompsett, Hafe and F. Aldinger, “Bismuth based oxide electrolytes-structure and ionic conductivity”, Journal of the European Ceramic Society, Vol. 19, pp. 1801-1826 (1999)
62. M. J. Verkerk, A. J. Burggraaf, “High oxygen ion conduction in sintered oxides of the Bi2O3-Ln2O3 system”, Solid State Ionics, Vol. 3-4, pp. 463-467 (1981)
63. H. Iwahara, T. Esaka, T. Sato and T. Takahashi, “Formation of high oxide ion conductive phases in the sintered oxides of the system Bi2O3-Ln2O3 (Ln=La-Yd) ”, Journal of Solid State Chemistry, Vol. 39, pp. 173-180 (1981)
64. K. Kruidhof, K. J. DeVries and A. J. Burggraaf, “Thermochemical stability and nonstoichiometry of yttria-stabilized bismuth oxide solid solutions”, Solid State Ionics, Vol. 37, pp.213-215 (1990)
65. N. X. Jiang , E. D. Wachsman , S. H. Jung, “A higher conductivity Bi2O3-based electrolyte”, Solid State Ionics, Vol. 150, pp. 347-353 (2002)
66. T. Takahashi, H. Iwahara, T. Esaka, “High Oxide Ion Conduction in Sintered Oxide of the System Bi2O3-M2O5”, Journal of the Electrochemical Society, Vol. 124, pp. 1563-1569 (1977)
67. K. Z. Fung, H. D. Baek and A. V. Virkar, “Thermodynamic and Kinetic Considerations for Bi2O3-based electrolytes”, Solid State Ionics, Vol. 52, pp.199-211 (1992)
68. F. Abraham, M. F. Debrreulle-Gresse, G. Mairesse, G. Nowogrocki, “Phase transitions and ionic conductivity in Bi4V2O11: an oxide with a layered structure”, Solid State Ionics, Vol. 28-30, pp. 529-532 (1988)
69. F. Abraham, J. C. Boivin, G. Mairesse, G. Nowogrocki, “The BIMEVOX series: a new family of high performances oxide ion conductors”, Solid State Ionics, Vol. 40-41, pp. 934-937 (1990)
70. T. Iharda, A. Hammouche, J. Foultier, M. Kleitz, J. C. Boivin, G. Mairesse, “Electrochemical characterization of BIMEVOX oxide-ion conductors”, Solid State Ionics, Vol. 48, pp. 257-265 (1991)
71. J. Yan, M. Greenblatt, “Ionic conductivities of Bi4V2-xMxO11-x/2(M=Ti, Zr, Sn, Pb)”, Solid State Ionics, Vol. 81, pp. 225-233 (1995)
72. C. K. Lee, D. C. Sinclair, A. R. West, “Stoichiometry and Stability of Bismuth Vanadate, Bi4V2O11, Solid Solutions”, Solid State Ionics, Vol. 62, pp. 193-108 (1993)
73. O. Joubert, A. Jouanneaux, M. Ganne, “Crystal Structure of Low-Temperature from of Bismuth Vanadium Oxide Determined by Rietveld Refinement of X-ray and Neutron Diffraction Data”, Materials Research Bulletin, Vol. 29, pp. 175-184 (1994)
74. F. Abraham, J. C. Boivin, G. Mairesse and G. Nowogrocki, “The BIMEVOX Series: A New Family of High Performances Oxide Ion Conductors”, Solid State Ionics, Vol. 40/41, pp. 934-937 (1990)
75. A. Watanabe and K. Das “Time-Dependent Degradation Due to the Gradual Phase Change in BICUVOX and BICOVOX Oxide-Ion Conductors at Temperatures below about 500°C”, Journal of Solid State Chemistry, Vol. 163, pp. 224-230 (2002)
76. C. Pirovano, M. C. Steil, E. Capoen, G. Nowogrocki, R. N. Vannier ”Impedance study of the microstructure dependence of the electrical properties of BIMEVOXes”, Solid State Ionics, Vol. 176, pp. 2079-2083 (2005)
77. M. C. Steil , F. Ratajczak, E. Capoen, C. Pirovano, R. N. Vannier, G. Mairesse “Thermal stability and preparation of dense membrane ceramics of BIMEVOX”, Solid State Ionics, Vol. 176, pp. 2305-2312 (2005)
78. C. Pirovano, R. N. Vannier, G. Nowogrocki, J. C. Boivin, G. Mairesse “Characterisation of the electrode–electrolyte BIMEVOX system for oxygen separation: Part II. Thermal studies under controlled atmosphere”, Solid State Ionics, Vol. 159, pp. 181-191 (2003)
79. T. Esaka, T. Mangahara and H. Iwahara, “Oxide Ion Conduction In The Sintered Oxides Of System Bi2O3-MO2 (M = Ti, Sn, Zr, Te)”, Solid State Ionics, Vol. 36, pp. 129-132 (1989)
80. Y. Chiang, D. P. Birnie, Ⅲ, and W. D. Kingery, “Physical Ceramics: Principles for Ceramic Science and Engineering,” John Wiley & Sons, Inc., New Jersey (1997).
81. Ionics radius data base (http://abulafia.mt.ic.ac.uk/shannon/)
82. T. M. Bruton, “Study of the Liquidus in the System Bi2O3-TiO2”, Journal of solid state chemistry, Vol. 9, pp. 173-175 (1974)
83. E. M. Levin, C. R. Robbins, H. F. McMurdie, “Phase Diagrams for Ceramists,” The American Ceramic Society, 5th (1985).
84. 李奇,模具構造與製造,清華大學出版社 (2004)
85. 林麗娟,X 光繞射原理及其應用,工業材料86 期 (1993)
86. 許樹恩、吳泰伯,X光繞射原理與材料結構分析,中國材料科學學會 (1993)
87. E. D. Wachsman, G. R. Ball, N. Jiang, D. A. Stevenson, “Structural and Defect Studies in Solid Oxide Electrolyte”, Solid State Ionics, Vol. 52, pp. 213-218 (1992)
88. F. Kurek, M. W. Breiter, “Thermal stability and ionic conductivity of the BIMEVOX. 10 ceramics (ME = Zn, Ni)”, Solid State Ionics, Vol. 86-88, pp. 131-135 (1996)
89. J. Adanez, L. F. de Diego, F. Garcia-Labiano, P. Gayan, A. Abad, “Selection of Oxygen Carriers for Chemical-Looping Combustion”, Energy & Fuels, Vol. 18, pp. 371-377 (2004)
90. F. Garcia-Labiano, J. Adanez, L. F. de Diego, P. Gayan, A. Abad, “Effect of Pressure on the Behavior of Copper-, Iron-, and Nickel-Based Oxygen Carriers for Chemical-Looping Combustion”, Energy & Fuels, Vol. 20, pp. 26-33 (2006)
91. H. Jin, M. Ishida, “Reactivity study on a novel hydrogen fueled chemical-looping combustion”, International Journal of Hydrogen Energy, Vol. 26, pp. 889-894 (2001)
92. B. D. Cullity and S. R. Stock, “Elements of X-ray diffraction”, Upper Saddle River, New Jersey : Prentice Hall (2001)

QR CODE