簡易檢索 / 詳目顯示

研究生: 廖昌倫
Chang-lun Liao
論文名稱: Ba0.88(Nd1.40Bi0.42La0.30)Ti4O12微波陶瓷-鹼金族硼矽玻璃之低溫共燒微結構與介電性質
Microstructures and Dielectric Properties of Low Temperature Co-Fired Ba0.88(Nd1.40Bi0.42La0.30)Ti4O12- Alkali-Borosilicate Glass
指導教授: 林舜天
Shun-tian Lin
口試委員: 楊成發
Chang-fa Yang
王錫福
Sea-fue Wang
鄭國忠
Kuo-chung Cheng
胡泉凌
Chun-ling Hu
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 英文
論文頁數: 89
中文關鍵詞: 低溫共燒微波介電性質B(NBL)T(Ba0.88(Nd1.40Bi0.42La0.30)Ti4O12)微波陶瓷鹼金族硼矽玻璃燒結助進劑
外文關鍵詞: LTCC, Microwave dielectric properties, B(NBL)T microwave ceramic, Alkali-borosilicate glass, Sintering aids
相關次數: 點閱:495下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要是將Ba0.88(Nd1.40Bi0.42La0.30)Ti4O12,B(NBL)T微波陶瓷與含鹼金族硼矽玻璃在低溫燒結下探討其微結構與介電性質。所添加的玻璃成份體積比例分別為50vol%、55vol%和60vol%,由膨脹計顯示出添加55vol%及60vol%的玻璃成份在燒結溫度高於900℃可達到超過90%理論密度。由燒結密度得知添加50及55vol%玻璃時,密度隨著燒結溫度增加而增加。但添加60vol%的玻璃成份在燒結溫度大於800℃時其密度開始減少。此外,燒結收縮行為與燒結密度的趨勢相似。
    由二次電子影像得知B(NBL)T微波陶瓷會隨溫度增加而產生柱狀結晶,從背向散射電子影像可以發現,當添加玻璃成份時,其晶粒形態在燒結溫度高於850℃發生改變。由X-ray觀察得知,B(NBL)T微波陶瓷其繞射強度最高的結晶面為(401),隨著玻璃成份的添加,其最高的結晶面轉為(320)。另外發現,除了結晶面的擇優取向改變之外,也伴隨著晶格常數的變化。造成此種現象為高溫時伴隨著離子交換機制發生,由玻璃與陶瓷製作而成的反應偶得知,鈉、鉀、鈣離子擴散於B(NBL)T相中,及鋇離子溶解於玻璃中。由於離子交換的現象也使得玻璃轉換溫度與軟化溫度提高,以至於需添加55vol%以上的玻璃才可達到高的緻密度。
    此種離子交換現象也降低了此材料的介電損失,當添加55vol%的玻璃成份在燒結溫度950℃持溫兩小時有較佳的介電性質(εr = 23.2, tanδ = 4.1×10-3, Q×f = 1620GHz, f = 6.67GHz),但是添加過多的液相,雖可促進緻密化亦會對整體介電行為造成影響。


    The microstructures and dielectric properties of Ba0.88(Nd1.40Bi0.42La0.30)Ti4O12, B(NBL)T/alkali-borosilicate glass composites were investigated in this study, with the volume percentage of the glass phase in the composite being either 50, 55, or 60 vol%. Dilatometric study indicated that the composites could be sintered to close to or above 90% of theoretical density at temperatures higher than 900℃ for the composites with 55 vol% and 60 vol% glass additions. Sintered density measurement indicated that the density increased with increase in sintering temperature for the composite with 50 vol% and 55 vol% glass additions, but, at sintering temperature higher than 800℃, the density decreased for the composite with 60 vol% glass addition. Similar trends were also observed for sintered shrinkage.
    It can be observed from SEM micrographs that the B(NBL)T microwave ceramic developed into elongated grains at high sintering temperatures. When added with glass, grain morphology changed, especially at sintering temperatures higher than 850℃. Observation based on XRD patterns indicated that the peak of highest intensity in the B(NBL)T crystal belongs to the (401) crystal plane, while that in the B(NBL)T/glass composites to the (320) crystal plane. Along with the change in crystalline preferred orientation, the lattice constants of the crystal also changed. Such a development of preferred orientation in B(NBL)T crystals was caused by an ionic exchange phenomenon where the Na, K, and Ca ions in the glass phase diffused into the B(NBL)T ceramic phase and the Ba ions in the B(NBL)T ceramic phase dissolved into the glass phase. Due to such an ionic exchange phenomenon, the glass transition temperature and softening temperature of the glass phase increased and a high sintered density could be achieved only when the glass phase addition was higher than 55 vol%.
    The ionic exchange phenomenon also resulted in the decrease of dielectric loss of the composites. Sintered at 950℃ for 2 hours, the composite with 55 vol% glass yielded the highest dielectric constant (εr = 23.2), the lowest dielectric loss (tanδ = 4.1×10-3), and a high Q×f value (Q×f = 1620 GHz, f = 6.67 GHz). Such a result arose from the competitive consequences of adding glass to the dielectric ceramic, in which the glass phase enhanced the dielectric properties of the composite by promoting densification, but also reduced these properties due to its inferior dielectric properties in the microwave range.

    摘 要 I Abstract II Acknowledgement IV Content VI List of Tables VII List of Figures IX Chapter 1. Introduction 1 Chapter 2. Literature Reviews 5 2.1 Microwave dielectric ceramic materials 5 2.1.1 MgTiO3-CaTiO3 system 5 2.1.2 (Zr0.8,Sn0.2)TiO4 system 5 2.1.3 BaO-4TiO system 5 2.1.4 Ba(Zn1/3Ta2/3)O3 system 6 2.1.5 BaO-PbO-Nd2O3-TiO2 system 6 2.2 Low temperature cofirable microwave dielectric material systems 8 2.3 Properties of Ba0.88(Nd1.40Bi0.42La0.30)Ti4O12, B(NBL)T microwave ceramic 11 2.4 Properties of alkali-borosilicate glass 13 Chapter 3. Experimental Procedures 15 Chapter 4. Results and Discussions 20 4.1 Shrinkage behavior 20 4.2 Sintered density 21 4.3 X-ray diffraction analysis 24 4.4 Microstructure analysis of Ba0.88(Nd1.40Bi0.42La0.30)Ti4O12-Alkali- borosilicate glass 35 4.5 Interfacial reaction between Ba0.88(Nd1.40Bi0.42La0.30)Ti4O12 and Alkali- borosilicate glass 54 4.6 Thermal analysis of Ba0.88(Nd1.40Bi0.42La0.30)Ti4O12-Alkali-borosilicate glass 64 4.7 Dielectric Properties 65 Chapter 5. Conclusions 68 References 70 Appendix 75

    [1] R. R. Tummala, “Fundamentals of microsystems packaging”, Mc Graw Hill, New York, pp.4-12, 59-60, 300-301, 616-617, 660-663, 699-700, (2001).
    [2] Y. Wang, G. Zhang, J. Ma, “Research of LTCC/Cu,Ag multilayer substrate in microelectronic packaging”, Materials Science and Engineering, vol.B94, pp.48-53, (2002).
    [3] S. Akihiro, S. Yuzo, “Electrical design technology for low dielectric constant multilayer ceramic substrate”, Proceedings - Electronic Components Conference, pp.719-726, (1991).
    [4] K. I. Shinotani, P. M. Raj, M. Seo, S. Bansal, H. Sakurai, S. K. Bhattacharya, R. Tummala, “Evaluation of alternative materials for system-on-package (SOP) substrates”, IEEE Transactions on Components Packaging and Manufacturing Technologys”, vol.27, pp.694-701, (2004).
    [5] J. H. Jean, T. K. Gupta, “Design of low dielectric glass+ceramics for multilayer ceramic substrate”, IEEE Transactions on Components Packaging and Manufacturing Technology-Part B: Advanced Packaging, vol.17, pp.228-233, (1994).
    [6] C. R. Chang, J. H. Jean, “Crystallization kinetics and mechanism of low-dielectric, low-temperature, cofirable CaO-B2O3-SiO2 glass-ceramics”, Journal of the American Ceramic Society, vol.82, pp.1725-1732, (1999).
    [7] H. Jantunen, T. Kangasvieri, J. Vahakangas, S. Leppavuori, “Design aspects of microwave components with LTCC technique”, vol.23, pp.2541-2548, (2003).
    [8] J. H. Park, Y. J. Choi, J. H. Park, J. G. Park, “Low-fire dielectric compositions with permittivity 20-60 for LTCC applications”, Materials Chemistry and Physics, vol.88, pp.308-312, (2004).
    [9] C. L. Hung, Y. C. Chen, “Influence of V2O5 additions to NdAlO3 ceramics on sintering temperature and microwave dielectric properties”, Journal of the European Ceramic Society, vol.23, pp.167-173, (2003).
    [10] J. D. Kraus, R. J. Marhefka, “Antennas for all application”, Mc Graw Hill, New York, (2002).
    [11] A. G. Belous, O. V. Ovchar, M. Valant, D. Suvorov, “Solid-state reaction mechanism for the formation of Ba6-xLn8+2x/3Ti18O54 (Ln=Nd, Sm) solid solutions”, Journal of Material Research Society, vol.16, pp.2350-2356, (2001).
    [12] S. Wu, G. Wang, Y. Zhao, H. Su, “BaO-TiO2 microwave ceramics”, Journal of the European Ceramic Society, vol.23, pp.2565-2568, (2003).
    [13] N. Michiura, T. Tatekawa, Y. Higuchi, H. Tamura, “Role of donor and acceptor ions in the dielectric loss tangent of (Zr0.8Sn0.2)TiO4 dielectric resonator material”, Journal of the American Ceramic Society, vol.78, pp.793-796, (1995).
    [14] C. S. Chen, C. C. Chou, C. S. Chen, I. N. Lin, “Microwave dielectric properties of glass-MCT low temperature co-firable ceramics”, Journal of the European Ceramic Society, vol.24, pp.1795-1798, (2004).
    [15] W. Shaohong, Z. Heping, “Sintering characteristics and crystallization for sol-gel-derived powders for low-dielectric and low-temperature sintering ceramics”, Journal of Materials Science: Materials in Electronics, vol.15, pp. 55-59, (2004).
    [16] W. Kazunari, N. Katsuyoshi, U. Hiroshi, “An investigation of the properties of new-developed LTCC materials or their use in microwave circuit”, Proceedings of SPIE-The International Society for Optical Engineering, vol.4931, pp.389-393, (2002).
    [17] I. S. Cho, D. W. Kim, J. R. Kim, K. S. Hong, “Low-temperature sintering and microwave dielectric properties of BaO(Nd1-xBix)2O34TiO2 by the glass additions”, Ceramics International, vol.30, pp.1181-1185, (2004).
    [18] O. Dernovsek, A. Naeini, G. Preu, W. Wersing, M. Eberstein, W.A Schiller, “LTCC glass-ceramic composites for microwave application”, Journal of the European Ceramic Society, vol.21 pp.1693-1697, (2001).
    [19] C. C. Cheng, T. E. Hsieh, I. N. Lin, “Microwave dielectric properties of glass-ceramic composites for low temperature co-firable ceramics”, Journal of the European Ceramic Society, vol.23, pp.2553-2558, (2003).
    [20] B. H. Jung, S. J. Hwang, H. S. Kim, “Glass-ceramic for low temperature co-fired dielectric ceramic materials based on La2O3-B2O3-TiO2”, Journal of the European Ceramic Society, vol.25, pp.3187-3193, (2005).
    [21] E. Markus, S. Wolfgang, “Development of high-permittivity glasses for microwave tapes”, Glass Science and Technology, vol.76, pp.8-16, (2003).
    [22] L. C. Chang, B. S. Chiou, W. H. Lee, “Effect of glass additions on the sintering behaviors and electrical microwave properties of BaO-Nd2O3-Sm2O3-TiO2 ceramics”, Journal of Materials Science: Materials in Electronics, vol.15, pp.153-158, (2004).
    [23] L. C. Chang, B. S. Chiou, “Effect of B2O3 nano-coating on the sintering behaviors and electrical microwave properties of Ba(Nd2-xSmx)Ti4O12 ceramics”, Journal of Electroceramics, vol.13, pp.829-837, (2004).
    [24] Y. Ota, K. I. Kakimoto, H. Ohsato, T. Okawa, “Low-temperature sintering of Ba6-3xSm8+2xTi18O54 microwave dielectric ceramics by B2O3 and GeO2 addition”, Journal of the European Ceramic Society, vol.24, pp.1755-1760, (2004).
    [25] C. L. Huang, M. H. Weng, “Improved high Q value of MgTiO3-CaTiO3 microwave dielectric ceramics at low sintering temperature”, Materials Research Bulletin, vol.36, pp.2741-2750, (2001).
    [26] C. L. Huang, M. H. Weng, “Liquid phase sintering of (Zr,Sn)TiO4 microwave dielectric ceramics”, Materials Research Bulletin, vol.35, pp.1881-1888, (2000).
    [27] G. Huang, D. Zhou, J. Xu, X. Chen, D. Zhang, W. Lu, B. Li, “Low-temperature sintering and microwave dielectric properties of (Zr,Sn)TiO4 ceramics”, Materials Science and Engineering, vol.B99, pp.416-420, (2003).
    [28] M. H. Weng, C. L. Huang, “Single phase Ba2Ti9O20 microwave dielectric ceramics prepared by low temperature liquid phase sintering”, The Japan Society of Applied Physics, vol.39, pp.3528-3529, (2000).
    [29] Y. J. Choi, J. H. Park, W. J. Ko, J. H. Park, S. Nahm., J. G. Park, “Low temperature sintering of BaTi4O9-based middle-k dielectric composition for LTCC applications”, Journal of Electroceramics, vol.14, pp.157-162, (2005).
    [30] S. J. fiedziuszko, I. C. Hunter, T. Itoh, Y. Kobayashi, T. Nishikawa, N. Stizer, K. Wakino, ”Dielectric materials, devices, and circuits”, IEEE Transactions on Microwave Theory and Techniques, vol.50, pp.706-720, (2002).
    [31] K. Wakino, K. Minai, H. Tamura, “Microwave characteristics of (Zr,Sn)TiO4 and BaO-PbO-Nd2O3-TiO2 dielectric resonator”, Journal of the American Ceramic Society, vol.67, pp.278-281, (1984).
    [32] A. Ioachim, M. I. Toacsan, M. G. Banciu, L. Nedelcu, H. Alexandru, C. Berbecaru, D. Ghetu, G. Stoica, “BNT ceramics synthesis and characterization”, Materials Science and Engineering, vol.B109, pp.183-187, (2004).
    [33] Y. J. Wu, X. M. Chen, “Modified Ba6-3xNd8+2xTi18O54 microwave dielectric ceramics”, Journal of the European Ceramic Society, vol.19, pp.1123-1126, (1999).
    [34] T. H. Kim, J. R. Park, S. J. Lee, H. K. Sung, S. S. Lee, T. G. Choy, “Effects of Nd2O3 and TiO2 addition on the microstructures and microwave dielectric properties of BaO-Nd2O3-TiO2 system”, ETRI Journal, vol.18, pp.15-27, (1996).
    [35] Y. J. Wu, X. M. Chen, “Bismuth/samarium cosubstituted Ba6-3xNd8+2xTi18O54 microwave dielectric ceramics”, Journal of the American Ceramic Society, vol.83, pp.1837-1839, (2000).
    [36] T. Okawa, M. Imaeda, H. Ohsato, “Site occupancy of Bi ions and microwave dielectric properties in Ba6-3xNd8+2xTi18O54 solid solutions”, Materials Science and Engineering, vol.B88, pp.58-61, (2002).
    [37] J. S. Kim, C. I. Cheon, T. R. Park, H. S. Shim, “Dielectric properties and crystal structure of Ba6-3x(Nd,M)8+2xTi18O54(M=La,Bi,Y) microwave ceramics”, Journal of Materials Science, vol.35, pp.1487-1494, (2000).
    [38] J. Wang, X. M. Chen, J. S. Yang, “Ba4Nd2Ta6O30 dielectric ceramics modified by Bi substitution for Nd”, Journal of Materials Science: Materials in Electronics, vol.10, pp.483-486, (1999).
    [39] M. Valant, D. Suvorov, D. Kolar, “Role of Bi2O3 in optimizing the dielectric properties of Ba4.5Nd9Ti18O54 based microwave ceramics”, Journal of Materials Research, vol.11, pp.928-931, (1996).
    [40] C. L. Huang, M. H. Weng, C. T. Lion, C. C. Wu, “Low temperature sintering and microwave dielectric properties of Ba2Ti9O20 ceramics using glass additions”, Materials Research Bulletin, vol.35, pp.2445-2456, (2000).
    [41] C. M. Cheng, Y. T. Hsieh, C. F. Yang, “Effect of glass doping for the sinterability of Ba(Mg1/3Ta2/3)O3 ceramics”, Ceramics International, vol.28, pp.255-260, (2002).
    [42] H. Ohsato, Y. Futamata, H. Sakashita, N. Araki, K. Kakimoto, S. Nishigaki, “Configuration and coordination number of cation polyhedra of tungstembronze-type-like Ba6-3xSm8+2xTi18O54 solid solutions”, Journal of the European Ceramic Society, vol.23, pp.2529-2533, (2003).
    [43] H. Ohsato, M. Imaeda, “The quality factor of the microwave dielectric materials based on the crystal structure-as an example: the Ba6-3xR8+2xTi18O54 (R=rare earth) solid solutions”, Materials Chemistry and Physics, vol.79, pp.208-212, (2003).
    [44] Y. M. Chiang, D. P. Birnie, W. D. kingery, “Physical Ceramics”, John Wiley & Sons, Inc. pp.453,463, (1997).
    [45] A. Silva, F. Azough, R. Freer, C. Leach, “Microwave dielectric ceramics in the system BaO-Li2O-Nd2O3-TiO2”, Journal of the European Ceramic Society, vol.20, pp.2727-2734, (2000).
    [46] R. Popielarz, C. K. Chiang, R. Nozaki, J. Obrzut, “Dielectric properties of polymer/ferroelectric ceramic composites from 100Hz to 10GHz, Macromolecules, vol.34, pp.5910-5915, (2001).
    [47] V. S. Grigor’ev, A. K. Yakhkind, V. Ya. Alaev, “Kinetics of the ion-exchange interaction in glass melts containing barium and alkali metal oxides”, Soviet Journal of Glass Physics and Chemistry (English translation of Fizika I Khimiya Stekla), vol.14, pp.126-131, (1989).
    [48] W. D. Kingery, H. K. Bowen, D. R. Uhlmann, “Introduction to ceramics”, John Wiley & Sons, Inc. Second Edition, pp.879-945, (1976).
    [49] G. Kniajer, K. Dechant, P. Apte, “Low loss, low temperature cofired ceramics with higher dielectric constants for multichip modules (MCM), International Conference on Multichip Modules, pp.121-127, (1997).
    [50] C. Siligardi, “Modifications on bulk crystallization of glasses belonging to M2O-CaO-SiO2-ZrO2 system in a 2.45 GHz microwave field”, Microwave Processing of Materials, vol.430, pp.429-434, (1996).
    [51] Q. Zhang, “Enhanced dielectric and electronmechanical responses in high dielectric constant all-polymer percolative composites”, Advance Functional Material, vol.14, pp.501-506, (2004).

    QR CODE