簡易檢索 / 詳目顯示

研究生: 劉賾銘
Ze-Ming Liu
論文名稱: 低介電之透輝石相玻璃陶瓷的合成及應用於LTCC氮氣製程下品質因子改善之研究
Systhesis of low dielectric Diopside phase glass-ceramic and Quality factor enhancement by introducing reducing atmosphere in LTCC process
指導教授: 周振嘉
Chen-Chia Chou
口試委員: 廖文照
Wen-Jiao Liao
朱立文
Li-Wen Chu
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 113
中文關鍵詞: 透輝石玻璃陶瓷低介電常數高品質因子低溫共燒陶瓷技術抗還原
外文關鍵詞: Diopside, Glass ceramic, Low dielectric constant, High quality factor, LTCC, Reductive-resistance
相關次數: 點閱:406下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年高頻行動通訊和無線區域網路(LAN)的普遍使用,如:藍芽和高頻射頻(RF)的系統所使用的元件為了在高頻模組使用,而逐漸往小體積的尺寸去生產。這應用於高頻材料系統的需求必須具備低介電常數(low dielectric constant, εr)、高品質因子(high quality factor, Q f)的特性,因此目前使用低溫共燒陶瓷製成的技術開發的材料,為了能在低溫的條件下和銅膠共燒生產,是產業相當重視的議題。
    本論文主要在研究CaMaSi2O6透輝石相之玻璃陶瓷系統的合成,此系統添加ZrO2作為成核劑對相及電性上的影響,隨著ZrO2的添加使得材料主體有不錯的燒結緻密性,在5.05mol% ZrO2添加到透輝石主相中,有最好的密度值在3g/cm3左右。由XRD發現添加不同ZrO2成核劑後有明顯的透輝石相和T-ZrO2出現,且隨著ZrO2的增加T-ZrO2的峰值越強。在SEM微觀下也觀察到無添加成核劑的透輝石主相仍以散亂的玻璃態為主,有添加成核劑的主相有明顯的結晶成長,氧化鋯的添加確實有作為異質成核的功效,能降低核成長的自由能,另外由BEI影像中發現有白點顆粒的析出,利用EDS分析後得知有T-ZrO2的形成是由於Ca和Mg元素固溶到Zr中,導致氧化鋯由M相轉T相的變化。在電性上看到介電常數基本上都小於10在低介電常數的範圍,而有結晶成長的透輝石主相,品質因子(Qxf)相對有比較高的提升,在5.05 mol% ZrO2量添加,有較好的品質因子表現為7310 GHz。
    而後為了使透輝石相玻璃陶瓷的材料系統能應用在LTCC製程下和卑金屬電極共燒,試著改變不同燒結氣氛對添加5.05 mol% ZrO2在透輝石主相中,比較在一般大氣與氮氣下燒結結果的差異。在電性部分品質因子的數值在氮氣燒結下明顯降低至3330 GHz。推測原因,從XRD分析發現在氮氣下燒結的試片有峰值寬化現象,是由於氮氣下燒結的試片,晶體內部有較多的空缺形成而造成晶格內的應變值較大,另外再由XPS分析證明透輝石主相有明顯被還原的趨勢,因此可知熱處理後的玻璃陶瓷在缺氧的氮氣氣氛下燒結而產生被還原的現象,使得材料半導化而影響電性表現。
    因此為了改善氮氣下燒結的特性,在第三部份我們試著在添加ZnO作為抗還原劑依不同比例分析ZnO在透輝石相中的變化,由XRD發現隨著ZnO的添加量從0.5到4 mol%的添加範圍內,基本上仍維持著透輝石相和T-ZrO2,而在6、8 mol%後有R-Zn2SiO4的形成,但這些相態都屬於低介電常數的性質,因此介電常數(εr)仍維持在7~8之間。而在3.31mol%開始時單位晶胞有逐漸膨脹的趨勢,推測大量的Zn佔據了Si的位置,因Zn離子半徑大於Si而造成主相晶體畸變的現象,這晶體膨脹的趨勢和品質因子的提升一致,而由XPS分析證實在3.31~8mol%的ZnO添加,透輝石主相的鍵結能,確實有往高的電子束縛能偏移,證實晶體畸變使氧不易脫離而產生抗還原的作用。ZnO的添加確實有助於氮氣下改善品質因子的特性,在4 mol%的ZnO添加有最佳的電性表現,介電常數(εr)為7.25、品質因子(Qxf)為8330。


    High-frequency mobile communication and wireless local area networks (LAN) are widespread used in recent years. For instance, components use in the systems of bluetooth or high-frequency radio frequency (RF) are produced based on miniature size in order to make them use in high-frequency modules, which require low dielectric constant (εr) and high quality factor (Q×f). Hence, the materials, which are developed by means of Low Temperature Co-fired Ceramics (LTCC), are an important research issue in recent years.
    This study aims to research on the composition of glass-ceramic system of CaMaSi2O6 Diopside. ZrO2 added in this system is acting as nucleation agent on electricity and Diopside phase. Moreover, the addition of ZrO2 makes the main body of the material has good densification after sintering. When 5.05mol% ZrO2 is added to Diopside phase, the best density value is about 3g/cm3. By means of XRD, it is found that addition of different ZrO2 nucleation agents make Diopside phase and T-ZrO2 obviously appear, and peak values of T-ZrO2 will be higher as the increase of ZrO2 added. By means of SEM, it is observed that the Diopside phase without nucleation agent is mainly in disordered glassy state and there is obvious crystal growth in the phase with the addition of nucleation agent. The addition of ZrO2 exactly increases the efficiency of heterogeneous nucleation and reduces free energy of growth. Moreover, in BEI images, it is found that precipitation of white-spot particles and the result of the EDS analysis revealed that T-ZrO2 formed because of the solid dissolution of Ca and Mg in Zr lead ZrO2 to change from M phase into T phase. The dielectric constant is basically below 10 within low dielectric constant range and Qxf of Diopside phase with crystal growth relatively increases higher. ZrO2 added in 5.05 mol% shows better performance of Qxf is 7310 GHz.
    In the second part of this study, in order to make glass-ceramic material system of Diopside phase to be applied in co-firing the electrode of base metal in the process of LTCC. Different sintering atmospheres are applied to affect the addition of 5.05 mol% ZrO2 in Diopside phase and to contrast the different sintering results in general atmosphere and Nitrogen. In the part of electricity, the value of Qxf in the condition of Nitrogen sintering apparently reduces into 3330 GHz. In the analysis of XRD, it is found that the peak value of specimen in the condition of Nitrogen sintering widens because many gaps form inside the crystal of the specimen that cause the larger strain value in the crystal. In addition, in the analysis of XPS, it is proved that there is an obvious tendency of restoration in Diopside phase; thus, glass ceramic after heat treatment in the atmosphere of hypoxia Nitrogen causes the phenomenon of restoration to make the material become the state of Semiconductor and affect the electrical properties.
    In the third part, in order to improve the sintering characteristic in Nitrogen, the addition of ZnO is used as reductive-resistance agent to analyze changes of ZnO in Diopside phase according to different ratios. By means of XRD, it is found that as the addition of ZnO ranges between 0.5 and 4mol%, Diopside phase and T-ZrO2 are basically maintained. And R-Zn2SiO4 forms after 6 and 8 mol%, but these phases belong show lower dielectric constant; therefore, dielectric constant still maintains between 7 and 8. In the condition of 3.31mol%, cell volume starts to have the tendency of increasing expansion and it is speculated that the large amount of Zn occupies the place of Si because the radius of Zn ion is larger than that of Si to cause the distortion of phase crystal. The tendency of crystal expansion and the increase of Qxf are consistent. In the analysis of XPS, it is verified that as ZnO increases in 3.31~8mol%, bonding energies of Diopside phase deviate toward high bonding energy (eV). It is also proved that distortion of crystal makes Oxygen difficult to separate and causes the effect of reductive-resistance. The addition of ZnO exactly helps improve the property of Qxf in Nitorgen. The addition of ZnO in 4mol% shows the best electrical properties. Dielectric constant is 7.25 and Qxf is 8330.

    中文摘要………………………………………………………………………….....I 英文摘要………………………………………………………………………......III 誌謝………………………………………………………………………………...V 目錄………………………………………………………………………………..VI 圖目錄……………………………………………………………………………..IX 表目錄…………………………………………………………………………...XIII 第一章 緒論………………………………………………………………………..1 1.1研究背景………………………………………………………………………..1 1.2研究目的………………………………………………………………………..3 第二章 文獻與原理………………………………………………………………..5 2.1微波介電材料的發展…………………………………………………………..5 2.2微波介電材料的原理…………………………………………………………..9 2.2.1介電原理與性質…………………………………………………………...9 2.2.2品質因子………………………………………………………………….12 2.2.3共振頻率溫度係數……………………………………………………….17 2.3玻璃陶瓷結晶成長機制………………………………………………………19 2.3.1玻璃的形成……………………………………………………………….19 2.3.2玻璃陶瓷之製程………………………………………………………….22 2.3.3 成核機制…………………………………………………………………23 2.3.3-1 均質成核………………………………………………………….23 2.3.3-2 異質成核………………………………………………………….26 2.3.3-3 結晶成長機制…………………………………………………….27 2.3.3-4 熱處理控制成核與晶體成長…………………………………….28 2.4透輝石結構……………………………………………………………………30 2.5 LTCC製程技術與應用……………………………………………………….33 2.6半導體能隙理論………………………………………………………………36 2.6.1透輝石相玻璃陶瓷抗還原之設計……………………………………….40 2.6.1-1 施體添加………………………………………………………….41 2.6.1-2 受體添加………………………………………………………….41 第三章 實驗流程與分析方法……………………………………………………..43 3.1實驗程序………………………………………………………………………43 3.2實驗儀器與規格………………………………………………………………50 3.3材料性質檢測手法……………………………………………………………51 3.3.1密度之量測……………………………………………………………….51 3.3.2 XRD之量測分析………………………………………………………...52 3.3.3 SEM微觀分析……………………………………………………………52 3.3.4 XPS分析…………………………………………….……………………52 3.3.5品質因子和介電常數量測……………………………………………….53 第四章 結果分析與探討…………………………………………………………55 4.1透輝石相添加ZrO2作為成核劑之分析結果…………………………………55 4.1.1透輝石相添加ZrO2作為成核劑之密度分析……………………………56 4.1.2 透輝石相添加ZrO2作為成核劑之XRD分析…………………………57 4.1.3 透輝石相添加ZrO2作為成核劑之SEM分析…………………………59 4.1.4透輝石相添加ZrO2作為成核劑之 EDS分析………………………….61 4.1.5透輝石相添加ZrO2作為成核劑之電性分析……………………………62 4.2大氣和氮氣下燒結對透輝石相的影響………………………………………63 4.2.1大氣和氮氣下燒結對透輝石相之電性與XRD結構之分析…………..63 4.2.2大氣和氮氣下燒結對透輝石相之XPS分析……………………………68 4.3氮氣下燒結透輝石相添加ZnO之分析結果…………………………………74 4.3.1氮氣下燒結透輝石相添加ZnO的密度之分析…………………………74 4.3.2 氮氣下燒結透輝石相添加ZnO的XRD分析…………………………76 4.3.3氮氣下燒結透輝石相添加不同ZnO比例之電性分析………………...78 4.3.4氮氣下燒結透輝石相添加不同ZnO比例之 XPS分析……………….80 第五章 結論………………………………………………………………………..85 未來展望……………………………………………………………………………88 參考文獻……………………………………………………………………………89

    1. R. J. Cava,“Dielectric materials for applications in microwave Communication,” Journal of Materials Chemistry.,Vol.11,pp.54-62,(2001).
    2. J.Wan ,“Design of a 5.305 GHz dielectric resonator oscillator with simulation and optimization”, Journal of Electronic Science and Technology of China, Vol.6,No.3,9, (2008).
    3. J. Krupka,“Extremely high-Q factor dielectric resonators for Millimeter-wav applications”, IEEE Transactions on Microwave theory and Techiques,Vol.53, No. 2,2.(2005).
    4. I. Nicolaescu, A.Ioachim, I. Toacsan, I. Radu, G. Banciu,“High k materials used to manufacture miniaturized dielectric antennas for military applications”, Journal of Optoelectronics and Advanced Materials ,Vol.9,No.11, pp.3592-3597,11,(2007).
    5. C.C.Chiang,S.F Wang, Y.R. Wang,W.Cheng, J.Wei,“Densification and microwave dielectric properties of CaO–B2O3–SiO2 system glass–ceramics”,Ceramics Intern -ational,Vol.34,pp.599–604.(2008).
    6. M.T.Sebastian and H. Jantunen,“Low loss dielectric materials for LTCC Applicati -ons: a review“, International Materials Reviews ,Vol.53, No 2,(2008).
    7.H.Kishi,Y.Mzuno and H.Chazono,“Base-Metal Electrode-Multilayer Ceramic Capacitors: Past, Present and Future Perspectives“,Japanese Journal of Applied Physics,Vol.42,pp.1-15.(2003).
    8.楊正杰,張鼎張,鄭晃忠“銅金屬與低介電常數材料與製程,毫微米通訊期刊”, 第四期、第七卷。
    9. J. M. Osepchuk, “A History of Microwave Heating Applications,”IEEE Trans.“ Microwave Theory & Tech.,MTT-32,Vol. 9, pp.1200-1224 (1984).
    10.R.D.Richtmyer,“Dielectric Resonator”,Japanese Journal of Applied Physics.“ ,Vol 10,pp.391-398,(1939).
    11.A.Okaya,“The Rutile Microwave Resonator”,Proc.IRE.,45,p1921,(1960).
    12.H.M.O,Bryan,J.Thomson,J.K. Plourde,“A new BaO-TiO2 compound with temperature-Stable High Permittivity and Low Microwave Loss,“Journal of American Ceramic Society.,57,pp.450-453,(1974).
    13.M.H.Weng and C.L.Huang,“Single Phase Ba2Ti9O20 Microwave dielectric Ceramics prepared by low temperature liquid phase Sintering,“,Japanese Journal of Applied Physics.,Vol.39,pp3528-3529,(2000).
    14.M.H. Weng*, T.J. Liang, C.L. Huang,“Lowering of sintering temperature and Microwave dielectric properties of BaTi4O9 ceramics prepared by the Polymeric precursor method,“ Journal of the European Ceramic Society ,22 ,pp1693–1698. (2002).
    15.S.Kawashima,M.Nishida,I.Ueda and H.Ouchi, “Dielectric Properties at Micro-wave Frequencies of the Ceramics in the BaO-Sm2O3-TiO2System, ”Presented at the 87th Annual meeting of the American Ceramic Society, Cincinnati,OH,May 6,(1985).(Electronics Division , paper No.15-E-85).
    16.P.C.Osbond,R.W.Whatmore and F.W.Alinger,“The Properties and Microwave Application of Zirconium Titanate Stannate Ceramics,“Brit.Ceram.Proc.,36,pp. 167-178(1985).
    17.T.Yamaguchi,Y.Komatsu,T.Otobe and Y.Murakami,“Newly Developed Ternary (CaSr、Ba)Zirconate Ceramic System for Microwave Resonators,“ Ferroelectrics, 27.,pp.273-276,(1980).
    18.A.Ioachim,M.I.Toacsan,L.Nedelcu,M.G.Banciu,C.A.Dutu,E.Andronescu,S.Jinga, “Thermal Treatments Effects on Microwave Dielectric Properties of Ba(Zn1/3Ta2/3)O3Ceramics. Romanian Journal of Information Science and Technology,Vol.10, pp,261-268.,11,(2007)
    19.M.Takata and K.Kageyama,Microwave Characteristies of A(B3+1/2B5+1/2)O3Ceramics(A=Ba,Ca,Sr;B3+=La,Nd,Sm,Yb;B5+=Nb,Ta), Journal of American Ceramic Society.,72,pp1955-1959,(1990).
    20.J.S.Kim,M.E.Song,M.R.Joung,J.H.Choi,S.Nahm,“Effect of B2O3 addition on the sintering temperature and microwave dielectric properties of Zn2SiO4 ceramics, Journal of the European Ceramic Society.,30,pp375-379,(2010).
    21.J. Y. Ha, J.W.Choi, S.J.Yoon,D.J.Choi,K.H, Yoon,H.J. Kim,“Microwave dielectric properties of Bi2O3-doped Ca[(Li1/3Nb2/3)1-xTix]O3Ceramics, Journal of the European Ceramic Society., 2413–2416. ,23.(2003).
    22.M.R.Joung,J.S.Kim,M.E.Song,S.Nahm,J.H.Paik,“Microstructure and Microwave dielectric properties of the Li2CO3-Added Sr2V2O7Ceramics,“Journal of American Ceramic Society., Journal of American Ceramic Society.93.[8].2132-2135(2010).
    23. R.Lebourgeoisa,S.Dugueyb, J.P.Gannea, J.M.Heintz.,“Influence of V2O5 on the magnetic properties of nickel-zinc-copperferrites,“Journal of Magnetism and Magnetic Materials.,312,328-330.(2007).
    24.S.F. Wang,Thomas C.K.Yang,Y.R.Wang,Y. Kuromitsu,“Effect of Glass composition on the densification and dielectric properties of BaTiO3 ceramic,Ceramics International.,27,157-162.(2001).
    25.Q.L.Zhang, H. Yang, J.X. Tong,“Low-temperature firing and microwave dielectric properties of MgTiO3 ceramics with Bi2O3-V2O5,Material Letters ,60,1188-1191.(2006).
    26. Y.Imanka and N.Kamehara,“Influence of shrinkage mismatch between copper and ceramics on dimensional control of the multilayer ceramic circuit board.“ Journal of American Ceramic Society. Jpn. Int. Ed., 100, 558–561.(1992).
    27. J.I.Steinberg, S.J.Horowitz and R.J.Bacher,“Low-temperature co-fired tape dielectric material systems for multilayer interconnections, advances in ceramic“ In Multilayer Ceramic Devices, 19, ed. J. B. Blum and W. R. Canon. American Ceramic Society, Westerville,OH,31–39.(1986).
    28. J.J.Jean and Y.C.Fang,“ Devitrification kinetics and mechanism of K2O–CaO– SrO–BaO-B2O3–SiO2 glass–ceramic. Journal of American Ceramic Society.,84, 1354–1360.(2001).
    29. S. X.Dai, R.F.Huang and D.L.Wilcox,“Use of titanates to achieve a temperature -stable low-temperature co-fired ceramic dielectric for wireless application“ Journal of American Ceramic Society, 85, 828–832. (2002).
    30. R.R.Tummala,“Ceramic and glass–ceramic packaging in the 1990s.”Journal of American Ceramic Society, 74, 895–908.(1991).
    31. C.R.Chang, and J.J. Jean,“Crystallization kinetics and mechanism of low dielectric, low-temperature, cofirable CaO–B2O3–SiO2 glass–ceramics.,“Journal of American Ceramic Society, 82, 1725–1732. (1999).
    32. H.Jantunen,R. Rautioaho, A,Uusim‥aki and S.Lepp‥avuori,“ Compositions of MgTiO3–CaTiO3 ceramic with two borosilicate glasses for LTCC technology. Journal of the European Ceramic Society., 20, 2331–2336.(2000).
    33. R.Umemura,H.Ogawa,H.Ohsato,A. Kan and A, Yokoi,“ Microwave dielectric properties of low-temperature sintered Mg3(VO4)2 ceramic., Journal of the European Ceramic Society., 25, 2865–2870. (2005).
    34. R.Umemura,H.Ogawa,H.Ohsato,A. Kan, “Low-temperature sintering microwave dielectric properties relations in Ba3(VO4)2 ceramic. J. Alloy. Compd., 424, 388–393.(2006).
    35. J. J.Bian, D. W.Kim and K. S.Hong,“Glass-free LTCC microwave dielectric ceramics.“,Mater. Res. Bull.,40,2120–2129.(2005).
    36. E. S.Kim, S. H.Kim and B. I. Lee ,“ Low-temperature sintering and microwave dielectric properties of CaWO4 ceramics for LTCC applications.“Journal of the European Ceramic Society., 26,2101–2104.(2006).
    37. T. Tsunooka, T .Sugiyama, H.Ohsato, K.Kakimoto, M.Andou, Y. Higashida and H.Sugiura, “Development of Forsterite with High Q and Zero Temperature Coefficient for Millimeterwave Dielectric Ceramics.“ Key Eng. Mater., 269, 199–202.(2004).
    38. M. E.Song, , J. S.Kim, , M. R.Joung, and S.Nahm,“Synthesis and Microwave Dielectric Properties of MgSiO3 Ceramics.“Journal of American Ceramic Society, 91(8), 2747–2750. (2008).
    39. Q. L.Zhang, H. Yang, and H.P.Sun, A new microwave ceramic with low- permittivity for LTCC applications. Journal of the European Ceramic Society., 2008, 28, 605–609.
    40 Umayahara.et.al.Nov.18,(2003),“Glass Ceramics Dielectric Material and Sintered Glass“Ceramics,Pat. 6649550.
    41 P.Hudon , I. H.Jung and D. R.Baker, “Experimental Investigation and Optimization of Thermodynamic Properties and Phase Diagrams in the Systems CaO-SiO2, MgO-SiO2, CaMgSi2O6-SiO2 and CaMgSi2O6-Mg2SiO4 to 1.0 GPa. Journal of Petrology.,46(9), 1859-1880. (2005).
    42.Vernon John著,蔡希杰譯,工程材料基礎篇第三版,俊傑書局股份有限公司,(2001).
    43. W. D. Kingery, H. K. Brown and D. R. Uhlmann, “Introduction to Ceramics,” Academic Press, John Wiley & Sons (1975).
    44.李俊遠,GPS微波介電材料與GPS天線設計概念,電子與材料雜誌,第14期.
    45.Kingery.Bowen.Uhlmann著,陳皇鈞譯,陶瓷材料概論(下冊),曉園出版,(1988).
    46.吳朗,電子陶瓷-介電陶瓷,全欣出版,民國83.
    47.吳朗,電子陶瓷-絕緣陶瓷,全欣出版,民國83.
    48.陳文照,廖金喜,蔡明雄,蔡丕樁,材料科學與工程(第三版),全華圖書,1996.
    49.汪建民主編, 陶瓷技術手冊(下), 中華民國粉末冶金協會,1994.
    50.W.Holand, V. Rheinberger, M. Schweiger,“Control of nucleation in glass ceramics, Phil. Trans. R. Soc. Lond. A (2003) 361, 575–589.
    51.W.D.Kingery and B.Uwmann, Introduction to Cermics”2nd Edition P.329, John Wiley & Sons (SEA) Press, SIN gapore,(1991).
    52 T. I. Barry, J. M.Cox, R.Morrell,“Cordierite glass-ceramics-effect of Ti02 and Zr02 content on phase sequence during heat treatment,“ Journal of Materials Science,13,594-610. (1978).
    53.N.M.Chairman,“Nomenclature of pyroxenes”,Canadian Mineralogist, Vol,27,pp.143-156(1989).
    54.王守誠,“澎湖群島斜輝石偉晶之化學特性在岩漿演化之應用”,國立成功大學碩士論文,中華民國96年6月.
    55. R.D. Shannon and C.T.Prewitt,“Effective Ionic Radii in Oxides and Fluorides”, Acta Cryst. (1969). B25, 925.
    56. P. Hudon, I.H. Jung, D. R. Baker,“Experimental Investigation and Optimization of Thermodynamic Properties and Phase Diagrams in the Systems CaO-SiO2,MgO-SiO2, CaMgSi2O6-SiO2 and CaMgSi2O6-Mg2SiO4 to 1.0 GPa, Journal of Petrology ,Vol.46, 9,(2005).
    57. W.A.Deer, R.A.Howie, J.Zussman,著,謝宇平、李鴻超、賀義興等譯校《造岩礦物﹐二卷A.單鏈矽酸鹽》(第二版)﹐地質出版社﹐北京﹐1983。
    (W.A.Deer, R.A.Howie, J.Zussman,Rock-Forming Minerals,Vol.2A﹐Single-Chain Silicate,2nd Edition,Longman,1978.)
    58.歐佩雯,“低溫燒結氮化鋁/玻璃/複合材料之製程與性能研究”,國立成功大學碩士論文,中華民國96年6月.
    59.李宜芝,“B2O3-SiO2-BaO玻璃添加ZnO對BaTi4O9微波介電陶瓷低溫製程微觀與介電特性之影響”,國立台灣科技大學碩士論文,中華民國98年7月18.
    60,蔡信行,孫光中,奈米科技導論-基本原理及應用,新文京出版,中華民國93年6 月10日.
    61.楊偉君,“抗還原型BaTiO3系介電材料之研究”,國立清華大學博士論文,中華 民國92年6月.
    62.P. Tian,J.Cheng,W. Zheng, H.Li,“The influence of reductant on the crystallization of CaO-MgO-SiO2glass,Thermochimica Acta 494, 30-34. (2009)
    63. J. M. Herbert , J. Master Sci., p645, 62,(1963).
    64. Burn, I.,“Mn-Doped Polycrystalline BaTiO3”. J. Mater. Sci.,Vol.14,p.2453-2458. (1979).
    65. Burn,I.,“ Ceramic Disk Capacitor with Base-Metal Electrode.”,Ceram. Bulletin., 57, 600-604,(1978).
    66. J. S. Park, Y. H. Han,“Effects of MgO coating on microstructure and dielectric properties of BaTiO3,“Journal of the European Ceramic Society, 27, 1077–1082. (2007).
    67. Y. Li, X.Yao, L.Zhang,“Dielectric properties and microstructure of magnesium Doped Ba1+k(Ti1−xCax)O3−x+k ceramics,“Ceramics International, 30, 1283–1287. (2004).
    68. J.G.Fisher , B.K.Lee ,S.Y.Choi, S.M.Wang ,S.Joong ,L. Kang,“ Inhibition of abnormal grain growth in BaTiO3 by addition of Al2O3”, Journal of the European Ceramic Society.26. 1619–1628. (2006).
    69. D.W.Hahn,Y.H.Han,“Quantitative analysis of oxidation-reduction behavior of Mn-dope-d BaTiO3”,Ceramics International,34, 1341-1344,(2008).
    70.T.F.Lin,C.T.Hu,I.N.Lin,“Influence of CaO addition on the electrical properties of BaTiO3“,Ceramics,J.Appl.Phys.,p1042-1047.(1990).
    71.K.J.Park,C.H.Kim,Y.J.Yoon,S.M.Song,Y.T.Kim,K.H.Hur,“Doping behaviors of dysprosium,yttrium and holmium in BaTiO3 ceramics.”Journal of the European Ceramic Society ,29,1735-1741.(2009).
    72.J.H.Kim,S.H.Yoon,Y.H.Han,“Effects of Y2O3 addition on electrical conductivity and dielectric properties of Ba-excess BaTiO3,”Journal of the European Ceramic Socciety, 27,1113-1116.(2007).
    73.G.Wen, X. Zheng, and L.Song,“Effects of P2O5 and sintering temperature on microstructure and mechanical properties of lithium disilicate glass-ceramics.” Acta Materialia., 55, 3583-3591.(2007).
    74. L.Wang,Q.M.Zhang,D.Jun, Structural characteristics and dielectric properties of glass-ceramic nanocomposites of (Pb,Sr)Nb2O6-NaNbO3-SiO2, Transactions of Nonferrous Metals society of China,20,(8).(2010).
    75. Qin,W., Szpunar, J.A.“Origin of lattice strain in nanocrystalline materials Philosophical“,Magazine Letters ,Vol.85, Issue12, Pages 649-656, 12,(2005).
    76. V. Biju .Neena Sugathan , V. Vrinda ,S. L. Salini, Estimation of lattice strain in nanocrystalline silver from X-ray diffraction line broadening, J.Mater. Sci, 43, pp:1175–1179.(2008).
    77.V. P. Zakaznova-Herzog,H.W. Nesbitt,G.M. Bancroft, J.S.Tse,“High resolution core and valence band XPS spectra of non-conductor pyoxenes,”Surface Science 600,3175-3186 ,(2006).
    78.F.Teixeira,R.Berjoan,G.Peraudeau,D.Perarnau,“Solar preparation of SiOx(X 1) Nanopowders from silicon vaporization on a ZrO2 pellet.XPS and Photoluminescence characterization“,Solar Energy,78,763-771,(2005).
    79. J. Chastain , R.C.King,Hand book of X-ray Photoelectron Spectroscopy,Published By Physical Electronics,Inc,October,(1995).
    80.J.Du,B.Jones,M.Lannagan,“Preparation and characterization of dielectric glass ceramics in Na2O-PbO-Nb2O-SiO2 system,“Materials Letters, 59.2821-2826. (2005).
    81.N.H.Nguyen,J.B.Lim,S.Nahm,“Effect of Zn/Si Ratio on the Microstructural and Microwave Dielectric properties of Zn2SiO4 Ceramics”J.Am.Ceram.Soc.,90[10] 3127-3130,(2007).
    82.D.F.K.Hennings&H.Schreinemacher,“Ca-acceptors in Dielectric Ceramics Sintered in Reducive Atmospheres”,Journal of the European Ceramic Society 15, 795-800. (1995).
    83.Y.Sakabe,N,Wada,T.Hiramatsu,T.Tongaki,“Dielectric Properties of Fine-Grained BaTiO3 Ceramics Doped with CaO”,Jpn.J.Appl.Phys,Vol.41,pp.6922-6925 (2002),

    無法下載圖示 全文公開日期 2016/07/21 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE