簡易檢索 / 詳目顯示

研究生: 黃俊強
Chun-Chiang Huang
論文名稱: 有機無機奈米核殼粒子之合成與其光催化之特性
Synthesis and characterization of organic/inorganic core–shell nanoparticles acted as visible light photocatalyst
指導教授: 蔡協致
Hsieh-Chih Tsai
口試委員: 朱一民
I-Ming Chu
王孟菊
Meng-Jiy Wang
王丞浩
Chen-Hao Wang
朱智謙
Chih-Chien Chu
學位類別: 博士
Doctor
系所名稱: 應用科技學院 - 應用科技研究所
Graduate Institute of Applied Science and Technology
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 112
中文關鍵詞: 有機染料核/殼卟啉二氧化鈦奈米金
外文關鍵詞: Organic dye, Core/shell, Porphyrin, Titania, Nanogold
相關次數: 點閱:242下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 建立奈米核/殼粒子的技術是一個倍受重視的研究領域,尤其在醫藥及生技上的潛力更是無限,而近幾年發展中,兩種形態材料的結合所製造而成之「複合型奈米核/殼材料」逐漸受到重視而嶄露頭角,複合型奈米核/殼材料之研究不單是一般奈米材料的結合技術,而更是實現單一顆奈米核/殼材料同時據有「多功能性」於一身之夢想的延伸,其本研究旨在建立一套有機染料與無機材料多功能複合型奈米核/殼材料之技術,並希望藉由此複合型奈米核/殼材料結合技術,能廣泛運用在各領域,研究係以溶膠–凝膠法使二氧化鈦水解縮合選擇性均勻披覆在有機染料表面,實驗利用透析法將Dye自組裝排列製備成奈米層級的染劑且穩定分散於水中,研究顯示Dye適合在酸和中性環境下反應,NH3環境下Dye無法自組裝形成有形狀之奈米粒子,如需添加使用界面活性劑則需要選用不帶電性的界面活性劑,Dye – TiO2成功利用NH3進行合成反應,即提升了TiO2光催化反應範圍,成功達成TiO2激發態波長延伸至可見光區域,研究中也嘗試將此技術衍生至金屬材料奈米金,在Dye–Au複合材料方面,CTAB雖然對奈米金有著強烈吸引,但CTAB卻無法使用在Dye溶液下,需要改用不帶電高分子mPEG-b-P(MEA-co-VIm)使奈米金在Dye表面均勻披覆,而形成Dye–Au核/殼複合材料,這技術是具有相當性的價值,是因為Dye和二氧化鈦以及奈米金,是完全相反條件下卻成功完成核/殼結構之複合材料。


    In this study two kind of Core-shell nanoparticles were fabricated. The core materials is based on 5,10,15,20-tetrakis(pentafluorophenyl)-21H,23H-porphine (PF6). Dispersed PF6 nanoparticles were formed in water during dialysis through self-assembly of the PF6 molecules. Therefore, we are trying to coating titanim and gold particle on the suface. The resulting TiO2-modified and gold-modifed particles were characterized using several characteristic methods. In TiO2/PF6 core shell particle, a 10–20 nm thick TiO2 layer on the surface of the PF6 nanoparticles. In Au/PF6 core shell particle, the gold particle was from on the surrounding of PF6. The chemical composition of these core-shell structures was also confirmed. In addition, TiO2/PF6 core shell particle can be utilized as visible photocatalyst. The absorption spectrum of the PF6-TiO2 core-shell nanoparticle was extended to 300–500 nm, which greatly enhanced the photocatalytic efficiency in the visible light spectrum compared to that of bare TiO2.

    中文摘要 I 英文摘要 II 致謝 III 目錄 III 表目錄 V 圖目錄 VI 第一章 研究背景與動機 1 第二章 理論與文獻 6 2.1 溶膠–凝膠法(Sol–Gel Method) 6 2.1.1 溶膠–凝膠法的簡介 6 2.1.2 溶膠–凝膠法製備原理與反應機制 7 2.1.3 溶膠–凝膠控制變因 10 2.1.4 溶膠–凝膠法的優缺點 12 2.2 核/殼結構 (Core–shell structure) 之奈米粒子 13 2.2.1 核/殼結構介紹與文獻回顧 13 2.2.2 高分子披覆 25 2.2.3 無機物披覆 27 2.2.4 生化分子的披覆 29 2.3二氧化鈦 (Titanium dioxide ; TiO2) 30 2.3.1 二氧化鈦簡介 30 2.3.2 光觸媒種類 31 2.3.3 二氧化鈦光觸媒 33 2.3.4 二氧化鈦光觸媒之應用 34 2.3.4.1 抗菌 34 2.3.4.2 除汙 36 2.3.4.3 檢測 37 2.3.4.4 能源 37 2.4 可見光吸收之光觸媒 40 2.5 卟啉 42 2.6 奈米金粒子 48 2.6.1 奈米金簡介 48 2.6.2 表面電漿共振 52 2.6.3 量子尺寸效應 53 2.6.4 表面積效應 55 第三章 實驗方法 57 3.1 實驗藥品與儀器裝置 57 3.1.1 實驗藥品 57 3.1.2 實驗儀器與裝置 58 3.2 實驗配製 59 3.2.1 mPEG-b-P(MEA-co-VIm) 二團聯共聚物之合成 59 3.2.2 有機染料自組裝方法 60 3.2.3 分別調製Dye和TiO2前驅物在不同環境下之溶液 60 3.2.4合成Dye–TiO2和Dye–Au核/殼結構之技術 61 3.2.5 甲基藍和TiO2、Dye – TiO2核/殼奈米粒子調配 63 3.3 鑑定與分析方法 64 3.3.1 粒徑與界面電位分析 64 3.3.2 X-ray 繞射分析 (XRD) 64 3.3.3 穿透式電子顯微鏡 (TEM) 65 3.3.4 掃描式電子顯微鏡分析 (SEM) 65 第四章 結果與討論 66 4.1 Dye在各種環境中的性質 66 4.2 醇類與TiO2反應速率之關係 71 4.3 Dye的核/殼結構合成技術之TEM 72 4.4 Dye的核/殼結構合成技術之SEM/EDX 85 4.5 TiO2粒子及Dye–TiO2之晶體結構 98 4.6 Dye–TiO2和Dye–Au之UV-visible吸收光譜 100 4.7 Dye–TiO2光之催化效率 102 第五章 結論 103 參考文獻 106

    參考文獻
    [1] L. R. Hoffman, D. A. D’Argenio, M. J. MacCoss, Z. Y. Zhang, R. A. Jones; S. I. Miller, Nature 2005, 436, 1171–1175.
    [2] T. F. Mah; B. Pitts, B. Pellock; G. C. Walker; P. S. Stewart; G. A. O’Toole, Nature 2003, 426 , 306–310.
    [3] K. Kakinoki, K. Yamane, R. Teraoka, M. Otsuka, Y. Matsuda, J. Pharmaceutic Science 2004, 93, 582-589.
    [4] T.Y. Peng, A. Hasegawa, J. R. Qiu, K. Hirao, Chem. Mater. 2003, 15, 2011-2016.
    [5] Y. S. Chen, J. C. Crittenden, S. Hackney, L. Sutter, D. W. Hand, Environ. Sci. Technol. 2005, 39, 1201-1208.
    [6] M.A. Khan, H.T. Jung, O.B. Yang, J. Phys. Chem. B 2006, 110, 6626-6630.
    [7] G. K. Mor, O. K. Varghese, M. Paulose, K. Shankar, C. A. Grimes, Sol. Energy Mater. Sol. Cells 2006, 90, 2011–2075.
    [8] D. Wang, F. Zhou, Y. Liu, W. Liu, Mater. Lett. 2008, 62, 1819-1822.
    [9] G. Natu, Y. Wu, J. Phys. Chem. C 2010, 114, 6802–7.
    [10] J. J. Ebelmen, Ann. 1846, 57, 331.
    [11] C. J. Brinker, and G. W. Scherer, Academic press, Boston, 1990.
    [12] H. Schroeder, Phys. Thin Films 1969, 5, 87.
    [13] G. P. Kalaignan, D. J. Seo, S. B. Park, Materials Chemistry and Physics 2004, 85, 286.
    [14] R. K. Nagarale, V. K. Shahi, R. Rangarajan, J. Membrane Science 2005, 37, 248.
    [15] J. P. Chen, W. S. Lin, Enzyme Microb. Technol. 2003, 32, 801.
    [16] D. Y. Wang, K. Li, H. L. W. Chan, Sens Actuators A Phys 2004, 1, 114.
    [17] A. M. Siouffi, J. Chromatography A 2003, 801, 1000.
    [18] M. Sato, E. B. Slamovich, T. J. Webster, Biomater. Sci. 2005, 26, 1349.
    [19] 陳慧英、黃定加、朱秦億,「溶膠凝膠法在製備上之應用」,化工技術第七卷第十一期,1999年11月號。
    [20] A. Morifawa, Y. Iyoku, and Y. I. Kakimoto, J. Mater. Chem. 1985, 2, 679.
    [21] R. O. R. Coast, and W.L. Vasconcelos, J. Non Cryst Solids 2002, 304, 84.
    [22] M. Ochi, R. Takahashi, J. Polym Sci B Polym Phys 2001, 39, 1071.
    [23] B. Himmel, T. Gerber, H. Burger, J. Non Cryst Solids 1987, 91, 122.
    [24] Effect of long and short Pb-free soldering profiles of IPC/JEDEC J-STD-020 on plastic SMD packages, Microelectronics Reliability 2004, 44, 1293.
    [25] J. D. Mackenzie, J. Non Cryst Solids 1982, 48, 1.
    [26] 陳東煌,「複合奈米粒子的製備與應用」,化工技術,2003,120,180-193.
    [27] V. V. Hardikar and E. Matijevic, J. Colloid Interface Sci 2000, 221, 133-136.
    [28] F. Caruso, Chem. Eur. j 2000, 6, 413-419.
    [29] E. Matijevic, J Eur Ceram Soc 1998, 18, 1357-1364.
    [30] P. Davies, G. A. Schurr, P. Meenan, R. D. Nelson, H. E. Bergna, C. S. Brevett and R. H. Goldbaum, Adv. Mater. 1998, 10, 1264-1270.
    [31] 陳嘉祈和呂世源,「奈米核殼粒子與奈米中空球之製備與應用」,化工技術2003,120,194-203。
    [32] F. Caruso, Adv. Mater. 2001, 13, 11-22.
    [33] E. Matijevic, Chem. Mater. 1993, 5, 412-426.
    [34] X. C. Guo and P. Dong, Langmuir 1999, 15, 5535-5540.
    [35] A. P. Philipse, M. P. B. Vanbruggen and C. Pathmamanoharan, Langmuir 1994, 10, 92-99.
    [36] Z. Y. Zhong, Y. Mastai, Y. Koltypin, Y. M. Zhao and A. Gedanken, Chem. Mater. 1999, 11, 2350-2359.
    [37] D. Gerion, F. Pinaud, S. C. Williams, W. J. Parak, D. Zanchet, S. Weiss and A. P. Alivisatos, J. Phys. Chem. B 2001, 105, 8861-8871.
    [38] F. Caruso, R. A. Caruso and H. Mohwald, Science 1998, 282, 1111-1114.
    [39] F. Caruso, X. Y. Shi, R. A. Caruso and A. Susha, Adv. Mater. 2001, 13, 740-744.
    [40] K. S. Mayya, D. I. Gittins and F. Caruso, Chem. Mater. 2001, 13, 3833-3836.
    [41] L. M. LizMarzan, M. Giersig and P. Mulvaney, Langmuir 1996, 12, 4329-4335.
    [42] S. J. Oldenburg, R. D. Averitt, S. L. Westcott and N. J. Halas, Chem Phys Lett 1998, 288, 243-247.
    [43] J. B. Jackson and N. J. Halas, Russ. J. Phys. Chem. B 2001, 105, 2743-2746.
    [44] C. X. Song, D. B. Wang, G. H. Gu, Y. S. Lin, J. Y. Yang, L. Chen, X. Fu and Z. S. Hu, J. Colloid Interface Sci 2004, 272, 340-344.
    [45] K. Kamata, Y. Lu and Y. N. Xia, J. Am. Chem. Soc. 2003, 125, 2384-2385.
    [46] W. L. Zhang, B. Kohler, E. Oswald, L. Beutin, H. Karch, S. Morabito, A. Caprioli, S. Suerbaum and H. Schmidt, J. Clin. Microbiol. 2002, 40, 4486-4492.
    [47] R. Schmidt, H. Schmidt, P. Kapeller, C. Enzinger, S. Ropele, R. Saurugg and F. Fazekas, J. Clin. Microbiol. 2002, 203, 253-257.
    [48] R. C. Advincula, J. Dispersion Sci. Technol. 2003, 24, 343-361.
    [49] Frank Caruso, Adv. Mater. 2001,13, 11-21.
    [50] R. Partch, S.G Gangolli, E Matijević, W Cal, S Arajs, J. Colloid Interface Sci. 1991, 144, 27-35.
    [51] S.M. Marinakos, L.C. Brousseau , A. Jones, D.L. Feldheim, Chem. Mater. 1998, 10, 1214-1219.
    [52] S.M. Marinakos, J.P. Novak, L.C. Brousseau, A.B. House, E.M. Edeki, J. Am. Chem. Soc. 1999, 121, 8518-8522.
    [53] L. Quaroni, G. Chumanov, J. Am. Chem. Soc. 1999, 121, 10642.
    [54] H.Y. Chang, S.Y. Cheng, C.I. Sheu, Y.H. Wang, Nanotechenology 2003, 14, 603-608.
    [55] A.S. Susha, F. Caruso, A.L. Rogach, G.B. Sukhorukov, A. Kornowski, H. Mohwald, M. Giersig, A. Eychmuller, H. Weller, Colloids Surf A Physicochem Eng Asp 2000, 163, 39-44.
    [56] M. Ohmori, E. Matijevic, J. Colloid Interface Sci. 1992, 150, 594-598.
    [57] Werner Stober, J. Colloid Interface Sci. 1968, 26, 62-69.
    [58] Andrew J. Ruys, Mater. Sci. Eng., A 1999, 265, 202-207.
    [59] Z.Y. Chen, Mater. Sci. Eng., B 1999, B67, 95-98.
    [60] Isabel P.S., Dmitry S. K., Arif A. M., Michael G., Nicholas A. K., Luis M. L.Marzan, Langmuir 2000, 16, 2731-2735.
    [61] Thearith Ung, Luis M. Liz-Marzan, Paul Mulvaney, Langmuir 1998, 14, 3740-3748.
    [62] X. Shi, T. Cassagneau, F. Caruso, Langmuir 2002, 18, 904-910.
    [63] K. S. Mayya, D. I. Gittins, F. Caruso, Chem. Mater. 2001, 13, 3833-3836.
    [64] L.M. Liz-Marzan, M. Giersig, P. Mulvaney, Langmuir 1996, 12, 4329-4335.
    [65] O. Masahiro, M. Egon, J. Colloid Interface Sci. 1993, 160, 288-292.
    [66] H.Y. Chang, S.Y. Cheng, C.I. Sheu, Y.H. Wang, Nanotechenology 2003, 14, 603-608.
    [67] H. Y. Chuang, D. H. Chen, J. Nanopart. Res. 2008, 10, 233-241.
    [68] V. C. Fuertes, C. F. A Negre, M. B. Oviedo, F. P. Bonafe, F. Y. Oliva, C. G. Sanchez, J Phys Condens Matter 2013, 115304.
    [69] C. Feldmann, Adv. Mater. 2001, 13, 1301-1303.
    [70] S. Gunes, T. Neugebauer, N. S. Sariciftci, J. Roither, M. Kovalenko, G. Pillwein, W. Heiss, Adv. Funct. Mater. 2006, 16, 1095-1099.
    [71] Ito S., Zakeeruddin S. M., Humphry-Baker R., Liska P., Charvet R., Comte P., Nazeeruddin M. K., Pechy P., Takata M., Miura H., Uchida S., Gratzel M. Adv. Mater. 2006, 18, 1202-1025.
    [72] Chuang H. Y., Chen D. H., J. Nanopart. Res. 2008, 10, 233-241.
    [73] O. Carp, C. L. Huisman, A. Reller, Prog. Solid State Chem. 2004, 32, 33-177.
    [74] A. Fujishima, T. N. Rao, D. A. Tryk, J. Photochem. Photobiol., C 2000, 1, 1-21.
    [75] J.M. Herrmann, Catal. Today 1999, 53, 115-129.
    [76] A. Mills, S. L. Hunte, J. Photochem. Photobiol., A 1997, 108, 1–35.
    [77] Li Q., Mahendra S., Lyon D.Y., Brunet L., Liga M.V., Li D., Alvarez P.J.J., Water Res. 2008, 42, 4591-4602.
    [78] Fujishima A., Honda K., Nature 1972, 238, 37–38.
    [79] A. Giwa, P. O. Nkeonye, K. A. Bello, E. G. Kolawole, J. Environ Prot 2012, 3, 1063-1069.
    [80] Murray C.A., Goslan E.H., Parsons S.A., J. Environ. Eng. Sci. 2007, 6, 311–317.
    [81] Salthammer T., Fuhrmann F., Environ. Sci. Technol. 2007, 41, 6573–6578.
    [82] Matsunaga T., Tomoda R., Nakajima T., Wake H., FEMS Microbiol. Lett. 1985, 29, 211–214.
    [83] Wei C., Lin W.Y., Zainal Z., Williams N.E., Zhu K., Kruzic A.P.,Smith R.L., Rajeshwar K., Environ. Sci. Technol. 1994, 28, 934–938.
    [84] Watts R.J., Kong S., Orr M.P., Miller G.C., Henry B.E., Water Res. 1995, 29, 95–100.
    [85] Zan L., Fa W., Peng T.P., Gong Z.K., J. Photochem. Photobiol. B. Biol. 2007, 86, 165–169.
    [86] Hajkova P., Spatenka P., Horsky J., Horska I., Kolouch A., Polym. 2007, 4, 397–401.
    [87] Cho M., Chung H., Choi W., Yoon J., Appl. Environ. Microbiol. 2005, 71, 270–275.
    [88] Kikuchi Y., Sunada K., Iyoda T., Hashimoto K., Fujishima A., J. Photochem. Photobiol. A. 1997, 106, 51–56.
    [89] Gelover S., Gomez L.A., Reyes K., Leal M.T., Water Res. 2006, 40, 3274–3280.
    [90] Lyon D.Y., Adams L.K., Falkner J.C., Alvarez P.J.J., Environ. Sci. Technol. 2006, 40, 4360–4366.
    [91] Chong M., Jin B., Chow C., Saint C., Water Res. 2010, 44, 2997–3027.
    [92] Chen J, Liu M, Zhang L, Zhang J, Jin L, Water Res. 2003, 37, 3815-3820.
    [93] Zhang Z, Yuan Y, Fang Y, Liang L, Ding H, Jin L, Talanta 2007, 73, 523-528.
    [94] M. Gratzel, Nature 2001, 414, 338–344.
    [95] P. Xie, F. Guo, Curr. Org. Chem 2007, 11, 1272–1286.
    [96] Z. Chen, F. Li, C. Huang, Curr. Org. Chem. 2007, 11, 1241–1258.
    [97] N. Robertson, Angew. Chem. Int. Ed. 2008, 47, 1012–1014.
    [98] A. B. F. Martinson, T. W. Hamann, M. J. Pellin, J. T. Hupp, Chem. Eur. J. 2008, 14, 4458–4467.
    [99] A. Hagfeldt, M. Gratzel, Chem. Rev. 1995, 95, 49–68.
    [100] U. Bach, D. Lupo, P. Comte, J. E. Moser, F. Weissortel, J. Salbeck, H. Spreitzer, M. Gratzel, Nature 1998, 395, 583–585.
    [101] M. K. Nazeeruddin, S. M. Zakeeruddin, J.J. Lagref, P. Liska, P. Comte, C. Barolo, G. Viscardi, K. Schenk, M. Gratzel, Coord.Chem. Rev. 2004, 248, 1317–1328.
    [102] A. S. Polo, M. K. Itokazu, N. Y. M. Iha, Coord. Chem. Rev. 2004, 248, 1343–1361.
    [103] M. Gratzel, Inorg. Chem. 2005, 44, 6841–6851.
    [104] S. Nakade, T. Kanzaki, W. Kubo, T. Kitamura, Y. Wada, S.Yanagida, J. Phys. Chem. B 2005, 109, 3480–3487.
    [105] B. O Regan, M. Gratzel, Nature 1991, 353, 737–740.
    [106] Joo J., Kwon S.G., Yu T., Cho M., Lee J., Yoon J., Hyeon T., J. Phys. Chem. B 2005, 109, 15297-15302.
    [107] Vinodgopal K., Wynkoop D.E., Kamat P.V., Sci. Technol. 1996, 30, 1660-1666.
    [108] Ni M., Leung M.K.H., Leung D.Y.C., Sumathy K., Energy Rev. 2007, 11, 401-425.
    [109] Litter M.I., Catal. B: Environ. 1999, 23, 89-114.
    [110] Fujishima A., Zhang X., Tryk D., A. Surf. Sci. Rep. 2008, 63, 515-582.
    [111] Li H., Li J., Huo Y., J. Phys. Chem. B 2006, 110, 1559-1565.
    [112] Ishibai Y., Sato J., Nishikawa T., Miyagishi S., Appl.Catal. B: Environ. 2008, 79, 117-121.
    [113] Shaban Y.A., Khan S.U.M., Int. J. Hydrogen Energy 2008, 33, 1118-1126.
    [114] Furube A., Asahi T., Masuhara H., Yamashita H., Anpo M., Chem. Phys.Lett. 2001, 336, 424-430.
    [115] Irie H., Watanabe Y., Hashimoto K., J. Phys. Chem. B 2003, 107, 5483-5486.
    [116] Ihara T., Miyoshi M., Iriyama Y., Matsumoto O., Sugihara S., Appl. Catal., B 2003, 42, 403-409.
    [117] Milgrom L.R., OUP, Oxford, 1997; The porphyrins, ed. D. Dolphin, Academic Press, New York, 1978.
    [118] J. T. Groves, R. C. Haushalter, M. Nakamura, T. E. Nemo, B. J. Evans, J. Am. Chem. Soc. 1981, 103, 2884-2886.
    [119] K.M. Kadish, K.M. Smith, R. Guilard, The Porphyrin Handbook, Academic Press, San Diego 2000.
    [120] S. Takagi, H. Inoue, in: V. Ramamurthy, K.S. Schanze, Multimetallic and Macromolecular Inorganic Photochemistry, vol. 6, Marcel Dekker,New York, 1999, 215.
    [121] K.M. Smith, Porphyrins, Metalloporphyrins, Elsevier, Amsterdam, 1975.
    [122] H. Inoue, S. Funyu, Y. Shimada, S. Takagi, Pure Appl. Chem. 2005, 77, 1019-1033.
    [123] M. Wark, in: K.M. Kadish, K.M. Smith, R. Guilard (Eds.), The Porphyrin Handbook, vol. 17, Academic Press, New York, 2003.
    [124] V.R.L. Constantino, C.A.S. Barbosa, M.A. Bizeto, P.M. Dias, An. Acad. Bras. Cienc. 2000, 72, 45-49.
    [125] F. Bedioui, Coord. Chem. Rev. 1995, 144, 39-68.
    [126] J.K. Thomas, Chem. Rev. 1993, 93, 301-320.
    [127] M. Ogawa, K. Kuroda, Chem. Rev. 1995, 95, 399-438.
    [128] K. Takagi, T. Shichi, J. Photochem. Photobiol. C: Photochem. Rev. 2000, 1, 113-130.
    [129] J.K. Thomas, Acc. Chem. Res. 1988, 21, 275-280.
    [130] K. Takagi, T. Shichi, in: V. Ramamurthy, K.S. Schanze, Solid State and Surface Photochemistry, vol. 5, Marcel Dekker, New York, 2000, 31.
    [131] M. Ogawa, in: S.M. Auerbach, K.A. Carrado, P.K. Dutta, Handbook of Layered Materials, Marcel Dekker, 2004.
    [132] 郭清奎,「金屬奈米粒子的製造」,物理雙月期刊,614,2001。
    [133] M. Moskovits, Rev. Mod. Phys. 1985, 57, 783-826.
    [134] Bradley J. S., The Chemistry of Transition Metal Colloids. In Clusters and Colloids; Schmid, G., Ed.; VCH Publishers: New York, NY (USA), 1994, 459.
    [135] Reetz M. T., Helbig W., J. Am. Chem. Soc. 1994, 116, 7401-7402.
    [136] Reetz M. T., Winter M., Breinbauer R.; Thomas T.A., Vogel W., Chem. Eur. J. 2001, 7, 1084-1094.
    [137] Brust M., Walker M., Bethell D., Schiffrin D. J., Whyman R., J. Chem. Soc. Chem. Commun. 1994, 7, 801-802.
    [138] Ntes V. F., Krishnan K. M., Alivisatos A. P., Science 2001, 291, 2115-2117.
    [139] Guo L., Huang Q., Li X.Y., Yan S., Phys. Chem. Chem. Phys. 2001, 3, 1661-1665.
    [140] Park S.J., Kim S., Lee S., Khim Z. G., Char K., Hyeon, T., J. Am. Chem. Soc. 2000, 122, 8581-8582.
    [141] Yu Y.Y., Chang S.S., Lee C.L., Wang C. R., Chris., J. Phys. Chem. B 1997, 101, 6661-6664.
    [142] Kortenaar M. V. Ten., Kolar Z. I., Tichelaar F. D., J. Phys. Chem. B 1999, 103, 2054-2060.
    [143] Okitsu K., Bandow, H., Maeda Y., Chem. Mater. 1996, 8, 315-317.
    [144] Okitsu K., Mizukoshi Y., Bandow H., Yamamoto T. A., Nagata Y., Maeda Y., J. Phys. Chem. B 1997, 101, 5470-5472.
    [145] Mizukoshi Y., Okitsu K., Maeda Y., Yamamoto, T. A., Oshima R., Nagata Y., J. Phys. Chem. B 1997, 101, 7033-7037.
    [146] Bohen C., Huffman D., Absorption and Scatteing of Light by Small Particles, Wiley, New York, 1983.
    [147] Sharma V., Park K., Srinivasarao M., Mater. Sci. Eng., R. 2009, 65, 1-38.
    [148] Ghosh S.K., Assam University Journal of Science & Technology: Physical Science and Technology 2011, 7, 114.
    [149] 尹邦耀,「奈米時代」,五南圖書出版,2005
    [150] 蕭義鴻,「以電化學方法製備鐵奈米粒子之研究」,國立中山大學電機工程學系研究所碩士論文,2004。
    [151] C. Kim, M. Choi, J. Jang, Catal. Commun. 2010, 11, 378–382.
    [152] R. Marsalek, Z. Navratilova, Chem. Pap. 2011, 65, 77-84.
    [153] R. Marsalek, J. Pospišil, B. Taraba, Colloids. Surf. A. Physicochem Eng Asp 2011, 383, 80-85.
    [154] Burckbuchler V., Wintgens V., Lecomte S., Percot A., Leborgne C., Danos O., Kichler A., Amiel C., Biopolymers 2006, 81, 360–370.
    [155] Bender M. L., Komiyama, M., Cyclodextrin Chemistry; Springer-Verlag: Berlin, Germany 1978.
    [156] Valente A. J. M., Nilsson M., Soderman O., J. Colloid Interface Sci. 2005, 281, 218–224.
    [157] Cabaleiro L. C., Nilsson M., Soderman O., Langmuir 2005, 21, 11637–11644.
    [158] Pineiro A., Banquy X., Perez-Casas S., Tovar E., Garcıa A., Villa A., Amigo A., Mark A. E., Costas M., J. Phys. Chem. B 2007, 111, 4383–4392.
    [159] Xing H., Lin S. S., Yan P., Xiao J. X., Chen Y. M., J. Phys. Chem. B 2007, 111, 8089–8095.
    [160] Takayama Y., Negishi H., Nakamura S., Koura N., Idemoto Y., Yamaguchi F., J. Ceram. Soc. Jpn. 1999, 107, 119-122.
    [161] K. Tanaka, Shokubai Kogaku Koza 10, Chijin Shokan, Tokyo 1967, 787.
    [162] Yoldas B. E., J. Mater. Sci. 1986, 21, 1087-1092.
    [163] Bowen H. K., Mater. Sci. Eng. 1986, 65, 1574-1577.
    [164] Stober W., Fink A., Bohn E. J., J. Colloid Interface Sci. 1968, 26, 62-69.
    [165] C. Kim, M. Choi, J. Jang, Catal. Commun. 2010, 11, 378–382.
    [166] J. W. Lee, S. Kong, W. S. Kim, J. Kim, Mater. Chem. Phys. 2007, 106, 39–44.
    [167] I. Shown, M. Ujihara, T. Imae., J. Nanosci. Nanotechnol. 2011, 11, 1–7.
    [168] J.W. Lee, M.R. Othman, Y. Eom, T.G. Lee, W.S. Kim, J. Kim., Microporous Mesoporous Mater 2008, 116, 561–568.
    [169] H. Kuwata, H. Tamaru, K. Esumi, K. Miyano, Appl. Phys. Lett. 2003, 83, 4625-4627.
    [170] Yu Y. Y., Chang S. S., Lee C. L., Wang C. R. C., J. Phys. Chem. B. 1997, 101, 6661-6664.
    [171] Dawson A., Kamat P. V., J. Phys. Chem. B 2001, 105, 960-966.
    [172] Ship A. N., Lahav M., Gabai R., Willner I., Langmuir 2000, 16, 8789-8795.
    [173] R.F. Khairutdinov, N. Serpone, J. Phys. Chem. 1995, 99, 11952–11958.
    [174] S.Y. Huang, G. Schlichthorl, A.J. Nozik, M. Gratzel, A.J. Frank, J. Phys. Chem. B. 1997, 101, 2576–2582.
    [175] D. Chen, D. Yang, J. Geng, J. Zhu, Z. Jiang, Appl. Surf. Sci. 2008, 255, 2879–2884.
    [176] M. Tanaka et al, J. Biomed. Mat. Res. 2004, 684–695.

    無法下載圖示 全文公開日期 2019/08/06 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE