簡易檢索 / 詳目顯示

研究生: 韓健安
Christopher Andrew
論文名稱: 基於工業4.0之系統設計暨應用電腦語義學方法預測、緩解及避免機器故障
Industrial 4.0-based System Design for Machine Failure Prediction, Mitigation, and Avoidance with Semantic Ap-proach
指導教授: 周碩彥
shuo yan chou
郭伯勳
Po-Hsun Kuo
口試委員: 郭伯勳
po hsun kuo
羅士哲
shih che lo
學位類別: 碩士
Master
系所名稱: 管理學院 - 工業管理系
Department of Industrial Management
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 52
中文關鍵詞: 工業4.0智能製造語義負載均衡集成系統設計緩解
外文關鍵詞: Industry 4.0, Integrated System Design, Semantics, Smart Manufacturing, Mit-igation, Load Balancing
相關次數: 點閱:152下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

工業 4.0 的實施帶來了新技術,例如網絡物理系統 (CPS),可實現對物理機器的數字控制。 該 CPS 可以更精確地控制和監控製造過程,從而能夠準確預測機器性能和故障。 例如,預測性維護可以預測機器故障並深入了解根本原因。 語義的使用還有助於理解製造系統生成的大量數據。 然而,由於一個或多個組件不可用而導致的製造系統性能下降仍然是一個挑戰。 雖然一些研究通過高精度預測模型或緩解策略提出了解決方案,但這些方法之間缺乏整合。 因此,本研究旨在模擬一個結合了預測性維護、按需自動負載平衡和語義的集成系統。
使用 Python 創建的模擬模擬了真實工業機器的行為和關係。 它提供類似於真實機器的合成數據,並使用語義來標準化模擬中的數據通信。 這種語義網絡網格類似於知識圖譜,包含有關機器當前狀態的信息。 因此,集成系統可以預測機器故障,並通過將工作負載分配給其他機器來自動降低對整體系統性能的影響。 與傳統的非預測、非緩解製造系統相比,該仿真表明系統吞吐量有了顯著提高。 此外,仿真表明集成系統增加了系統正常運行時間和機械利用率。


The implementation of Industrial 4.0 brings about new technologies, such as Cyber-Physical Systems (CPS), that enable digital control of physical machines. This CPS results in more precise control and monitoring of the manufacturing process, enabling accurate predictions of machine performance and failure. Predictive maintenance, for instance, can predict machine failures and provide insight into the root causes. The use of semantics also helps to make sense of the large amounts of data generated by the manufacturing system. However, the reduced performance of a manufacturing system due to the unavailability of one or more components remains a challenge. While some studies have proposed solutions through high-accuracy prediction models or mitigation policies, there is a lack of integration between these approaches. Therefore, this study aims to simulate an integrated system that combines predictive maintenance, on-demand automatic load balancing, and semantics.
The simulation, created using Python, mimics the behavior and relationships of real industrial machines. It provides synthetic data that resembles real machines and uses semantics to standardize data communication within the simulation. This semantic network mesh, similar to a knowledge graph, contains information about the machine's current state. Thus, the integrated system can predict machine failures and automatically reduce the impact on overall system performance by distributing the workload to other machines. The simulation demonstrates a significant improvement in system throughput compared to traditional non-predictive, non-mitigation manufacturing systems. Additionally, the simulation shows that the integrated system increases system uptime and mechanic utilization.

ABSTRACT i ACKNOWLEDGEMENT ii TABLE OF CONTENTS iii LIST OF FIGURES v LIST OF TABLES viii CHAPTER 1 INTRODUCTION 1 1.1. Research Motivation 1 1.2. Research Scope & Limitation 2 1.3. Research Objectives 2 1.4. Research Innovation & Contributions 3 1.5. Thesis Structures 3 CHAPTER 2 LITERATURE REVIEW 5 2.1. Industry 4.0 5 2.2. Industrial 4.0 Standards 7 2.3. Smart Manufacturing 12 2.4. Predictive Maintenance 13 2.5. Cyber-Physical System (CPS) 14 2.5.1. Load Balancing 15 2.5.2. Ontology in Industrial 4.0 15 2.6. Recaps, Gaps, and Contributions 16 CHAPTER 3 METHODOLOGY 18 3.1. Case Study 19 3.1.1. Case Study Description 19 3.1.2. Case Study Assumption 22 3.2. Steps and Approaches 23 3.2.1. Data Acquisition 23 3.2.2. Ontology Development 24 3.2.3. Initial Simulation Design 28 3.2.4. Load Balancing (Rescheduling) 30 3.2.5. Predictive Maintenance Model 33 3.2.6. Updated Simulation Design 37 CHAPTER 4 RESULT AND ANALYSIS 39 4.1. Exploratory Data Analysis Result 39 4.1.1. Descriptive Statistic 39 4.1.2. Graphical Distribution 39 4.1.3. Correlation 40 4.1.4. Missing or Incomplete Data 40 4.1.5. Balance Check 41 4.2. Simulation Configuration 41 4.3. Results Comparison 42 CHAPTER 5 VALIDATION, CONCLUSIONS, AND OUTLOOK 46 5.1. Research Conclusions 46 5.2. Research Outlook and Future Research Recommendation 46 REFERENCES 47 APPENDICES 53

[1] A. W. Colombo et al., "A 70-Year Industrial Electronics Society Evolution Through Industrial Revolutions: The Rise and Flourishing of Information and Communication Technologies," IEEE Industrial Electronics Magazine, vol. 15, no. 1, pp. 115-126, 2021, doi: 10.1109/MIE.2020.3028058.
[2] P. Leitão, F. Pires, S. Karnouskos, and A. Colombo, "Quo Vadis Industry 4.0? Position, Trends, and Challenges," IEEE Open Journal of the Industrial Electronics Society, vol. 1, pp. 298-310, 01/01 2020, doi: 10.1109/OJIES.2020.3031660.
[3] R. S. Peres, X. Jia, J. Lee, K. Sun, A. W. Colombo, and J. Barata, "Industrial Artificial Intelligence in Industry 4.0 - Systematic Review, Challenges and Outlook," IEEE Access, vol. 8, pp. 220121-220139, 2020, doi: 10.1109/ACCESS.2020.3042874.
[4] A. Barari, M. de Sales Guerra Tsuzuki, Y. Cohen, and M. Macchi, "Editorial: intelligent manufacturing systems towards industry 4.0 era," Journal of Intelligent Manufacturing, vol. 32, no. 7, pp. 1793-1796, 2021/10/01 2021, doi: 10.1007/s10845-021-01769-0.
[5] F. Tao, Q. Qi, A. Liu, and A. Kusiak, "Data-driven smart manufacturing," Journal of Manufacturing Systems, vol. 48, pp. 157-169, 2018/07/01/ 2018, doi: https://doi.org/10.1016/j.jmsy.2018.01.006.
[6] M. Javaid, A. Haleem, R. P. Singh, and R. Suman, "Enabling flexible manufacturing system (FMS) through the applications of industry 4.0 technologies," Internet of Things and Cyber-Physical Systems, vol. 2, pp. 49-62, 2022/01/01/ 2022, doi: https://doi.org/10.1016/j.iotcps.2022.05.005.
[7] M. Pech, J. Vrchota, and J. Bednář, "Predictive Maintenance and Intelligent Sensors in Smart Factory: Review," Sensors, vol. 21, no. 4, p. 1470, 2021. [Online]. Available: https://www.mdpi.com/1424-8220/21/4/1470.
[8] Z. M. Çınar, A. Abdussalam Nuhu, Q. Zeeshan, O. Korhan, M. Asmael, and B. Safaei, "Machine Learning in Predictive Maintenance towards Sustainable Smart Manufacturing in Industry 4.0," Sustainability, vol. 12, no. 19, p. 8211, 2020. [Online]. Available: https://www.mdpi.com/2071-1050/12/19/8211.
[9] B. C. Menezes, J. D. Kelly, A. G. Leal, and G. C. Le Roux, "Predictive, Prescriptive and Detective Analytics for Smart Manufacturing in the Information Age," IFAC-PapersOnLine, vol. 52, no. 1, pp. 568-573, 2019/01/01/ 2019, doi: https://doi.org/10.1016/j.ifacol.2019.06.123.
[10] J. Daily and J. Peterson, "Predictive Maintenance: How Big Data Analysis Can Improve Maintenance," in Supply Chain Integration Challenges in Commercial Aerospace: A Comprehensive Perspective on the Aviation Value Chain, K. Richter and J. Walther Eds. Cham: Springer International Publishing, 2017, pp. 267-278.
[11] J. C. Serrano-Ruiz, J. Mula, and R. Poler, "Smart manufacturing scheduling: A literature review," Journal of Manufacturing Systems, vol. 61, pp. 265-287, 2021/10/01/ 2021, doi: https://doi.org/10.1016/j.jmsy.2021.09.011.
[12] G. Büchi, M. Cugno, and R. Castagnoli, "Smart factory performance and Industry 4.0," Technological Forecasting and Social Change, vol. 150, p. 119790, 2020/01/01/ 2020, doi: https://doi.org/10.1016/j.techfore.2019.119790.
[13] D. Powell, M. C. Magnanini, M. Colledani, and O. Myklebust, "Advancing zero defect manufacturing: A state-of-the-art perspective and future research directions," Computers in Industry, vol. 136, p. 103596, 2022/04/01/ 2022, doi: https://doi.org/10.1016/j.compind.2021.103596.
[14] F. Pilati, G. Lelli, M. Faccio, M. Gamberi, and A. Regattieri, "Assembly line balancing for personalized production," IFAC-PapersOnLine, vol. 53, no. 2, pp. 10261-10266, 2020/01/01/ 2020, doi: https://doi.org/10.1016/j.ifacol.2020.12.2758.
[15] G. Shao, S. Jain, C. Laroque, L. H. Lee, P. Lendermann, and O. Rose, "Digital Twin for Smart Manufacturing: The Simulation Aspect," in 2019 Winter Simulation Conference (WSC), 8-11 Dec. 2019 2019, pp. 2085-2098, doi: 10.1109/WSC40007.2019.9004659.
[16] J. Friederich, D. P. Francis, S. Lazarova-Molnar, and N. Mohamed, "A framework for data-driven digital twins of smart manufacturing systems," Computers in Industry, vol. 136, p. 103586, 2022/04/01/ 2022, doi: https://doi.org/10.1016/j.compind.2021.103586.
[17] A. G. Frank, L. S. Dalenogare, and N. F. Ayala, "Industry 4.0 technologies: Implementation patterns in manufacturing companies," International Journal of Production Economics, vol. 210, pp. 15-26, 2019/04/01/ 2019, doi: https://doi.org/10.1016/j.ijpe.2019.01.004.
[18] G. Salierno, L. Leonardi, and G. Cabri, "The Future of Factories: Different Trends," Applied Sciences, vol. 11, no. 21, p. 9980, 2021. [Online]. Available: https://www.mdpi.com/2076-3417/11/21/9980.
[19] K. Zhou, L. Taigang, and Z. Lifeng, "Industry 4.0: Towards future industrial opportunities and challenges," in 2015 12th International Conference on Fuzzy Systems and Knowledge Discovery (FSKD), 15-17 Aug. 2015 2015, pp. 2147-2152, doi: 10.1109/FSKD.2015.7382284.
[20] K. Nagorny, S. Scholze, A. W. Colombo, and J. B. Oliveira, "A DIN Spec 91345 RAMI 4.0 Compliant Data Pipelining Model: An Approach to Support Data Understanding and Data Acquisition in Smart Manufacturing Environments," IEEE Access, vol. 8, pp. 223114-223129, 2020.
[21] P. Adolphs et al., "Referenzarchitekturmodell Industrie 4.0 (RAMI4. 0)," VDI/VDE Statusreport, p. 32, 2015.
[22] S.-Y. Chou, A. Dewabharata, and T. H.-K. Yu, "From Industry 4.0 to the Fourth Industrial Revolution," Journal of Information and Management, vol. 38, no. 1, pp. 14-25, 2018, doi: 10.20627/jsim.38.1_14.
[23] J. Bloem, M. Van Doorn, S. Duivestein, D. Excoffier, R. Maas, and E. Van Ommeren, "The fourth industrial revolution," Things Tighten, vol. 8, no. 1, pp. 11-15, 2014.
[24] R. Drath and A. Horch, "Industrie 4.0: Hit or Hype? [Industry Forum]," IEEE Industrial Electronics Magazine, vol. 8, no. 2, pp. 56-58, 2014, doi: 10.1109/MIE.2014.2312079.
[25] R. Heidel, Industrie 4.0: The reference architecture model RAMI 4.0 and the Industrie 4.0 component. Beuth Verlag GmbH, 2019.
[26] R. Heidel, U. Döbrich, M. Hankel, and M. Hoffmeister, Basiswissen RAMI 4.0: Referenzarchitekturmodell und Industrie 4.0-Komponente Industrie 4.0. Beuth Verlag, 2017.
[27] S.-W. Lin et al., "Industrial internet reference architecture," Industrial Internet Consortium (IIC), Tech. Rep, 2015.
[28] Y. C H, L. W P, and L. C, "Industry 4.0 Reference Architectural Models: Critical Review and Opportunities," International Journal of Advanced Research in Engineering Innovation, no. 4, pp. 40-49%V 3, 2021-12-01 2021. [Online]. Available: https://myjms.mohe.gov.my/index.php/ijarei/article/view/16341.
[29] S. Wei, J. Hu, Y. Cheng, Y. Ma, and Y. Yu, "The essential elements of intelligent Manufacturing System Architecture," 2017 13th IEEE Conference on Automation Science and Engineering (CASE), pp. 1006-1011, 2017.
[30] Q. Li et al., "Smart manufacturing standardization: Architectures, reference models and standards framework," Comput. Ind., vol. 101, pp. 91-106, 2018.
[31] J. Morgan, M. Halton, Y. Qiao, and J. G. Breslin, "Industry 4.0 smart reconfigurable manufacturing machines," Journal of Manufacturing Systems, vol. 59, pp. 481-506, 2021/04/01/ 2021, doi: https://doi.org/10.1016/j.jmsy.2021.03.001.
[32] Y. Lu, X. Xu, and L. Wang, "Smart manufacturing process and system automation – A critical review of the standards and envisioned scenarios," Journal of Manufacturing Systems, vol. 56, pp. 312-325, 2020/07/01/ 2020, doi: https://doi.org/10.1016/j.jmsy.2020.06.010.
[33] S. Sahoo and C.-Y. Lo, "Smart manufacturing powered by recent technological advancements: A review," Journal of Manufacturing Systems, vol. 64, pp. 236-250, 2022/07/01/ 2022, doi: https://doi.org/10.1016/j.jmsy.2022.06.008.
[34] S. Kadry, Ed. Diagnostics and Prognostics of Engineering Systems: Methods and Techniques. Hershey, PA, USA: IGI Global, 2013, pp. 1-461. [Online]. Available: https://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/978-1-4666-2095-7.
[35] W. Zhang, D. Yang, and H. Wang, "Data-Driven Methods for Predictive Maintenance of Industrial Equipment: A Survey," IEEE Systems Journal, vol. 13, no. 3, pp. 2213-2227, 2019, doi: 10.1109/JSYST.2019.2905565.
[36] R. van Dinter, B. Tekinerdogan, and C. Catal, "Predictive maintenance using digital twins: A systematic literature review," Information and Software Technology, vol. 151, p. 107008, 2022/11/01/ 2022, doi: https://doi.org/10.1016/j.infsof.2022.107008.
[37] L. Biggio and I. Kastanis, "Prognostics and Health Management of Industrial Assets: Current Progress and Road Ahead," Frontiers in Artificial Intelligence, Review vol. 3, 2020. [Online]. Available: https://www.frontiersin.org/articles/10.3389/frai.2020.578613.
[38] L. S. Dalenogare, G. B. Benitez, N. F. Ayala, and A. G. Frank, "The expected contribution of Industry 4.0 technologies for industrial performance," International Journal of Production Economics, vol. 204, pp. 383-394, 2018/10/01/ 2018, doi: https://doi.org/10.1016/j.ijpe.2018.08.019.
[39] B. Caiazzo, M. Di Nardo, T. Murino, A. Petrillo, G. Piccirillo, and S. Santini, "Towards Zero Defect Manufacturing paradigm: A review of the state-of-the-art methods and open challenges," Computers in Industry, vol. 134, p. 103548, 2022/01/01/ 2022, doi: https://doi.org/10.1016/j.compind.2021.103548.
[40] Q. Cao et al., "KSPMI: A Knowledge-based System for Predictive Maintenance in Industry 4.0," Robotics and Computer-Integrated Manufacturing, vol. 74, p. 102281, 2022/04/01/ 2022, doi: https://doi.org/10.1016/j.rcim.2021.102281.
[41] J. Nilsson and F. Sandin, "Semantic Interoperability in Industry 4.0: Survey of Recent Developments and Outlook," in 2018 IEEE 16th International Conference on Industrial Informatics (INDIN), 18-20 July 2018 2018, pp. 127-132, doi: 10.1109/INDIN.2018.8471971.
[42] J. Dalzochio et al., "Machine learning and reasoning for predictive maintenance in Industry 4.0: Current status and challenges," Computers in Industry, vol. 123, p. 103298, 2020/12/01/ 2020, doi: https://doi.org/10.1016/j.compind.2020.103298.
[43] M. H. Abidi, M. K. Mohammed, and H. Alkhalefah, "Predictive Maintenance Planning for Industry 4.0 Using Machine Learning for Sustainable Manufacturing," Sustainability, vol. 14, no. 6, p. 3387, 2022. [Online]. Available: https://www.mdpi.com/2071-1050/14/6/3387.
[44] O. E. Oluyisola, S. Bhalla, F. Sgarbossa, and J. O. Strandhagen, "Designing and developing smart production planning and control systems in the industry 4.0 era: a methodology and case study," Journal of Intelligent Manufacturing, vol. 33, no. 1, pp. 311-332, 2022/01/01 2022, doi: 10.1007/s10845-021-01808-w.
[45] J. Yan, Z. He, and S. He, "A deep learning framework for sensor-equipped machine health indicator construction and remaining useful life prediction," Computers & Industrial Engineering, vol. 172, p. 108559, 2022/10/01/ 2022, doi: https://doi.org/10.1016/j.cie.2022.108559.
[46] L. Romeo, J. Loncarski, M. Paolanti, G. Bocchini, A. Mancini, and E. Frontoni, "Machine learning-based design support system for the prediction of heterogeneous machine parameters in industry 4.0," Expert Systems with Applications, vol. 140, p. 112869, 2020/02/01/ 2020, doi: https://doi.org/10.1016/j.eswa.2019.112869.
[47] R. Nithish Kumar, R. Mohan, and N. Gobinath, "Improvement in production line efficiency of hemming unit using line balancing techniques," Materials Today: Proceedings, vol. 46, pp. 1459-1463, 2021/01/01/ 2021, doi: https://doi.org/10.1016/j.matpr.2021.03.020.
[48] J. Szpytko and Y. S. Duarte, "Integrated maintenance platform for critical cranes under operation: Database for maintenance purposes," IFAC-PapersOnLine, vol. 53, no. 3, pp. 167-172, 2020/01/01/ 2020, doi: https://doi.org/10.1016/j.ifacol.2020.11.027.
[49] B. C. Peixoto, L. B. d. Almeida, and V. B. Gomes, "Analysis of the Operation in a Woodwork Shop: Layout Aspects, Work Safety and Interaction with Ergonomics," in International Conference on Applied Human Factors and Ergonomics, 2020: Springer, pp. 401-406.
[50] K. Gok, E. Turkes, S. Neseli, and Y. Kisioglu, "Failure analysis of support during profile cutting process using horizontal milling machine," The International Journal of Advanced Manufacturing Technology, vol. 70, no. 5, pp. 1169-1179, 2014.
[51] "Large Bandsaw Milling Machine," L. B. M. Machine, Ed., ed.
[52] "Edger Milling Machine," E. M. Machine, Ed., ed.
[53] "Trimmer Milling Machine," T. M. Machine, Ed., ed.
[54] "Planer Milling Machine," P. M. Machine, Ed., ed.

無法下載圖示 全文公開日期 2026/02/14 (校內網路)
全文公開日期 2026/02/14 (校外網路)
全文公開日期 2026/02/14 (國家圖書館:臺灣博碩士論文系統)
QR CODE