簡易檢索 / 詳目顯示

研究生: 蔡宗翰
Tsung-han Tsai
論文名稱: 綠水泥與綠水泥混凝土之性質探討
Study on the Properties of Green Cement and Green Concrete
指導教授: 黃兆龍
Chao-lung Hwang
口試委員: 鄭大偉
none
郭東昊
none
林凱隆
none
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 174
中文關鍵詞: 鹼激發無機聚合物矽鈉比爐石偏高嶺土
外文關鍵詞: inorganic polymer, geopolymer, slage, SiO2/Na2O, metakaolin
相關次數: 點閱:252下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究主要探討以爐石與偏高嶺土作為主要激發材,氫氧化鈉與水玻璃作為鹼活化液之無機聚合膠結材作為綠水泥使用之性質。爐石綠水泥控制鹼當量在3%~6%,矽鈉比則在0.6~1.4之間,液固比變化在0.3~0.6之間;而偏高嶺土綠水泥控制鹼當量在15%~22%,矽鈉比則在0.6~1.4之間,液固比變化為0.5與0.6,以瞭解不同綠水泥之性質,隨後將綠水泥漿應用於混凝土上,瞭解其性質。研究結果發現,液固比為0.5時,爐石綠水泥之工作性高於偏高嶺土綠水泥27%以上。矽鈉比為1.0時與鹼當量為4.5%時,爐石綠水泥最高的抗壓強度54MPa,偏高嶺土綠水泥當鹼當量為22%與矽鈉比為1.0時,最佳的抗壓強度50MPa。爐石綠水泥之超音波波速與表面電阻值皆高於偏高嶺土綠水泥,但體積穩定性較差,表面有許多裂紋。當爐石綠水泥製成混凝土時,流動性佳,但其黏性不足,易產生剪力坍度;偏高嶺土則因黏性過高,所以不易製成混凝土,其坍度在0~35mm之間。水膠比為0.5之下,偏高嶺土綠水泥混凝土與爐石綠水泥混凝土之強度,可達到20.6MPa以上,其28天之抗壓強度甚至可以超越普通水泥混凝土7MPa。以超音波波速而言,普通水泥混凝土高於綠水泥混凝土。當綠水泥混凝土有較高的抗壓強度時,彈性模也越高,其波松比介於0.04~0.21之間屬於脆性材料。


This study is focusedon alkali-activated inorganic polymer, using slag and metakaolin stimulated by sodium hydroxide and waterglass solution, as green cement (GC), Slag GC is made from controlling of alkali equivalent within 3%~6%, SiO2/Na2O within 0.6~1.4 and water-to-solid ratio within 0.3~0.6, and metakaolin green cement is made from controlling the alkali equivalent within 15%~22%,SiO2/Na2O within 0.6~1.4 and water-to-solid ratio within 0.5 and 0.6. After measured the property of different GC, then it is used to mix concrete and to understand its properties. The result shows as water-to-solid ratio of 0.5, the workability of slag green cement is 27% more than metakaolin green cement.As SiO2/Na2O equal to 1.0 and the equivalent of alkali is equal to 4.5%, the compressive strength of slag GC is up to 54MPa, and when SiO2/Na2O equal to 1.0 and equivalent of alkali is equal to 22%, the compressive strength of metakaolin green cement is up to 50 MPa. The ultrasonic pulse velocity and electrical resistivity of slage GCare higher than those of the metakaolin GC, but the volume stability of slagGC is poor with lots of surface cracks. The slag green cement concrete (GCC) has good workability with low viscosity and the slump type shear slump. The metakaolin GCC has slump between 0~35mm with high viscosity andis not easily to mix.Aswater-to-binder ratio of 0.5, the compressive strength of metakaolin green concrete and slag green concrete can reach 20.6 MPa, the 28 days compressive strength of GCC is 7MPa higher than that of ordinary cement concrete. The ultrasonic pulse velocity of normal cement concrete is higher than that of GCC. As the GCC has high compressive strengththe elasticity modulus is high as well, and the Poisson ratio of GCC is between 0.04 and 0.21 with brittle feature.

中文摘要 英文摘要 總目錄 表目錄 圖目錄 代號及符號說明 第一章 緒論 1.1 研究背景 1.2 研究目的 1.3 研究流程 1.4 預期成果與貢獻 第二章 文獻回顧 2.1 綠水泥膠結材之發展 2.2 綠水泥之類型 2.3 高爐石與高嶺土之物化性質 2.4 鹼活化劑的特性 2.5 綠水泥反應機理 2.6 鹼激發爐石綠水泥之產物 2.7 無機聚合物綠水泥之結構 2.8 鹼活化劑之鹼量與模數 2.9 綠水泥之優缺點 第三章 試驗計畫 3.1 試驗計畫 3.2 試驗材料 3.2.1 水泥 3.2.2 爐石 3.2.3 高嶺土 3.2.4 氫氧化鈉 3.2.5 矽酸鈉 3.2.6 天然粗細粒料 3.3 試驗變數與項目 3.3.1 試驗變數 3.3.2 試驗項目 3.4 綠水泥與綠混凝土配比設計與試體製作 3.4.1 綠水泥配比設計 3.4.2 綠水泥混凝土配比設計 3.4.3 綠水泥與綠水泥混凝土之試體製作 3.5 試驗方法與設備 3.5.1 基本材料試驗 3.5.2 綠水泥漿與綠水泥混凝土試驗 第四章 試驗結果與分析 4.1 綠水泥漿之新拌性質 4.1.1 流度 4.1.2 水化溫度 4.2 綠水泥漿之硬固性質 4.2.1 抗壓強度 4.2.2 超音波 4.2.3 表面電阻 4.2.4 吸水率 4.2.5 長度變化量 4.3 綠水泥混凝土之性質 4.3.1 坍度 4.3.2 抗壓強度 4.3.3 超音波 4.3.4 表面電阻 4.3.5 吸水率 4.3.6 彈性模數 4.3.7 波松比 4.3.8 螢光探傷法 第五章 結論與建議 5.1 結論 5.2 建議 參考文獻

1.http://www.moeaec.gov.tw/ 經濟部能源局。
2.http://www.wmo.int/pages/index_en.html 世界氣象組織。
3.Meyer. C., “The greening of the concrete industry”,Cement & Concrete Composites, Vol.31 , pp.601-605 ( 2009)
4.黃兆龍,「南港車站地下化土建及機電工程委託施工監造服務(SCC新型製程研析及實務應用服務 期末報告)」,交通部鐵路改建工程局,台灣世曦工程顧問股份有限公司 (2008)。
5.黃兆龍,「台北國際金融中心超高層大樓新建工程-高性能混凝土先期品質管制(總結報告)」,台北金融大樓股份有限公司(1999)。
6.黃兆龍,「HPC使用高雄東帝士85層高樓整合規劃」,高性能混凝土研討會,第147~160頁 (1993)。
7.Wang, S. D., Pu, X. C., Scrivener, K. L., Pratt, P. L., “Alkali-activated cement and concrete. A review of properties and problems” ,Advances in Cement Research, Vol.7(27), pp.93-102 (1995)
8.Xu, H., Van Deventer, J. S. J., “The geopolymerisation of alumino-silicate minerals”, International Journal of Mineral Processing, Vol. 59, pp 247-266 (2000)
9.Krizana, D., Zivanovic, B.,” Effects of dosage and modulus of water glass on early hydration of alkali–slag cements”, Cement and Concrete Research, Vol.32, pp.1181-1188 (2002)
10.吳中偉、廉慧珍,「高性能混凝土」,中國鐵道出7版社,北京(1999)。
11.Roy, D.M., “Alkali-Activated Cements Opportunities and Challenges,” Cement and Concrete Research, Vol. 29, pp.249-254 (1999)
12.Wang, S. D., Scivener, K. L., “Hydration products of alkali activated slag cement”, Cement and Concrete Research, Vol.25(3), pp.561-571 (1995)
13.Lecomte, I., Henrist, C., Liegeois, M., Maseri, F., Rulmont, A., Cloots, R., “(Micro)-structural comparison between geopolymers, alkali-activated, slag cement and Portland cement”, Journal of the European Ceramic Society, Vol.26, pp.3789-3997 ( 2006)
14.徐彬,固態鹼組分礦渣礦渣水泥的研製及其水化機理和性能的研究,博士學位論文,清華大學,北京 (1995)。
15.代新祥、文梓芸,「無機聚合物水泥」,新型建築材料,北京,第34、35頁 (2001)。
16.Davidovits, J. “Geopolymers: Inorganic polymeric new materials” , Journal of thermal analysis, Vol.37, 1633-1656 (1991)
17.Davidovits, J. “30 years of successes and failures in geopolymer applications. Market trends and potential breakthroughs”, Proc., 2002 Int. Conf. on Geopolymer,
18.Davidovits, J., “Mineral polymers and methods of making them”, USA Patent 4,349,386 (1982)
19.Palomo, A., Grutzeck, M. W., Blanco, M. T., “Alkali-activated fly ashes A cement for the future”, Cement and Concrete Research, Vol. 29, 1323-1329 (1999)
20.黃兆龍,卜作嵐混凝土使用手冊,財團法人中興工程顧問社,台北,第22、23頁 (2007)。
21.黃兆龍,混凝土性質與行為,詹式書局,台北,205頁 (2002)
22.江慶陞,「高爐石之性質」,技術與訓練,第6期,第6卷,第36~41頁 (1981)。
23.黃伯齡,礦物熱差分析鑑定手冊,科學出版社,北京,第516-518 頁 (1987)。
24.Klein, C. and Hurlbut, C. S., Jr. 原著,黃怡禎 譯,「礦物學(Manual of Mineralogy 21st edition)」,地球科學文教基金會,第534 頁 (2000)。
25.韓敏芳,非金屬礦物材料制備與工藝,化學工業出版社,北京,第208-215頁 (2004)。
26.Chakraborty, A. K., “DTA study of preheated kaolinite in the mullite formation region”, Thermochimica Acta, Vol. 398 , No.2 , pp.203-209 (2003)
27.曹德光、蘇達根、楊占印、宋國勝,「偏高嶺石的微觀結構與鍵合反應能力」,礦物學報,第二十四卷,第四期,第366-372頁 (2004)。
28.陳秋艷、那琼,「偏高嶺土在我國的潛在應用」,礦業研究與開發,第二十四卷,第四期,第31-33頁 (2004)。
29.李元凱,「偏高嶺土聚合膠體工程性質之研究」,碩士論文,台灣科技大學,台北 (2008)。
30.蒲心誠,楊長輝,「高強鹼爐渣(JK)流態混凝土研究」,混凝土,第18~30頁 (1994)。
31.Glukovski,V.D.,“Alkali-Earth Binders and Concretes Produced with them”,Visheka shkola, Kiev, USSR, in Russian (1979)
32.Xu, H., Van Deventer, J. S. J., Lukey, G. C., “Effect of alkali metals on the preferential geopolymerization of stilbite/kaolinite mixtures” , Industrial & Engineering Chemistry Research, Vol. 40, 3749-3756, (2001)
33.Fernandez-Jimenez, A., Palomo, J. G., Puertas, F., “ Alkali-Activated Slag Mortars Mechanical Strength Behaviour” , Cement and Concrete Research, Vol.29, 1313-1321 (1999)
34.Shi, C., Day, R. L., “Some Factors Affecting Early Hydration of Alkali-Slag Cements” , Cement and Concrete Research, Vol.26, 439-417 (1996)
35.馬鴻文、楊靜、任玉峰、凌發科,「礦物聚合材料: 研究現狀與發展前景,地學前緣」,第9卷第4期,第397~407頁( 2002)。
36.成立,「三種碱激發膠凝材料的反應機理及其產物」,荊門職業技術學院學報,第19卷第6期,第92~95 (2004)。
37.Huanhai, Z., Xuequan,W. and Zhongzi,X., “ Kinetic Study on Hydration of Alkali-Activated Slag”,Cement and Concrete Research ,Vol. 23,pp1253-1258 (1993)
38.Caijun, S., “Strength, Pore Structure and Permeability of Alkali-Activated Slag Mortars”, Cement and Concrete Research, Vol.26, pp.1789-1799(1999)
39.禹尚仁、王悟敏,「無熟料硅酸鈉況渣水泥的水化機裡」,硅酸鹽學報, 第18卷第2期,第104~106頁 (1990)。
40.楊南如,「碱膠凝材料形成的物理化學基礎」,硅酸鹽學報,第24卷第2期,第209~215頁 (1996)。
41.Davidovits, J., “Properties of Geopolymer Cement,” proceedings First International Conference of Alkaline Cement and Concrete” , KIEV Ukraine, 131-149 ( 1994)
42.Sun, W., Zhang, Y.S., Lin, W. and Liu, Z.Y., “In situ monitoring of the hydration process of K-PS geopolymer cement with ESEM” , Cement and Concrete Research, Vol. 34, pp. 935-940 (2004)
43.Barbosa, V.F.F., MacKenzie, K.J.D. and Thaumaturgo, C., “Synthesis and characterisation of materials based on inorganic polymers of alumina and silica : sodium polysialate polymers”, International Journal of Inorganic Materials, Vol. 2, pp. 309-317 (2000)
44.Barn, Q.,Wu, X., Tang, M., “Investigation on new type steel-iron cement” ,2nd International Symposium on cement and concrete, Vol. 2 (1989)
45.Mortureux, B., Hornain, H. Gautier, E., “Comparison of the reactivity of different pozzolans” , 7th International Congr Chemistry of Cement, Vol. 4, (1982)
46.Davidovits, J., “Method for bonding fiber reinforcement on concrete and steel structures and resultant products” , U.S Patent 5,925, 449, pp. 1-13 (1999)
47.Davidovits, J., Davidovits, R. and James, C., France, “Chemistry of geopolymeric systems terminology, Proceeding of Geopolymer” ,99 Second International Conference, pp. 9-37(1999)
48.Davidovits, J. and Davidovits, M., “Geopolymer : Room-tempurature ceramic matriz for composites” , Ceramic Engineering Science Proceedings, Vol. 9, pp. 835-841 (1988)
49.Davidovits, J., Davidovics, M., "Geopolymer:ultra-high temperature tooling material for the manufacture of advanced composites", International SAMPE Symposium and Exhibition (Proceedings), Vol. 36, pp. 1939-1949 (1991)
50.Duxson, P., Provis, J. L., “Understanding the relationship between geopolymer composition, microstructure and mechanical properties” , Colloids and Surfaces A: Physicochem. Eng. Aspects, 269, 47-58 (2005)
51.戴詩潔,「高嶺石鋁矽酸鹽聚合材料之研究」,碩士論文,台北科技大學材料及資源工程系,台北 (2005)。
52.Phair, J. W., Van Deventer J. S. and Smith, J. D., “Mechanism of polysialation in the incorporation of zirconia into fly ash-based geopolymers” , International Engineering Chemical Research, Vol. 39, pp. 2925-2934 (2000)
53.Phair, J.W. and Van Deventer, J.S.J., “Effect of silicate activator pH on the leaching and material characteristics of waste-based inorganic polymers” ,Minerals Engineering, Vol. 14, No. 3, pp. 289-304( 2001)
54.文梓芸,「碱-硅酸集料反應的化學原理」,硅酸鹽學報,第22卷第6期,第567~604頁(1994)。
55.張西玲、姚愛玲,「礦渣的活性激發技術及機理的研究進展」,萍鄉高等專科學校學報,第3期,第12~16頁(2007)。
56.Wang﹐S. D., Scrivener, K. L., Pratt, P. L., “Factors affecting the strength of alkali-activated slag” , Cement and Concrete Research, Vol.24(6), pp.1033-1043 (1994)
57.Fernandez-Jimenez, A., Palomo, A., “Composition and microstructure of alkali activated fly ash binder: Effect of the activator” , Cement and Concrete Research, Vol. 35, pp.1984-1992 (2005)
58.張文華、鄭大偉、吳傳威,「以飛灰製成無機聚合樹脂應用於混凝土補強之可行性研究」,第十屆海峽兩岸環境保護學術研討會,台中 (2005)。
59.李明霖、鄭大偉,「無機聚合物吸附重金屬之研究」,資源與環境學術研討會論文集,花蓮,第131-138頁 (2005)
60.Bakharev, T., Sanjayan, J. G., Cheng, Y. B., “Effect of elevated temperature curing on properties of alkali-activated slag concrete”﹐Cement and Concrete Research, 2 Vol. 9(10), pp.1619-1625 (1999)
61.Shi C., Li, Y.,“Investigation on some factors affecting the characteristics of alkali-phosphorus slag cement” ﹐ Cement and Concrete Research, Vol.19(4), pp.527-533 (1989)
62.Shi,C., Xie,P.,“ Interface between cement paste and quartz sand in alkali-activated slag mortars” ﹐Cement and Concrete Research, Vol.28(6),pp. 887-896 (1998)
63.Fernandez-Jimenez, A., Palomo, J. G., Puertas, F., “Alkali-Activated Slag Mortars Mechanical Strength Behaviour” , Cement and Concrete Research, Vol.29, pp.1313-1321 (1999)
64.Maria, C., Garci, J., and Hamlin, H. J.﹐〝Examining the relationship between the microstructure of calcium silicate hydtate and drying shrinkage of cement pastes〞﹐Cement and Concrete Research, Vol.32(2)﹐pp. 289-296 (2002).
65.金漫彤,「無機聚合物固化重金屬技術及終產物研究」,碩士論文,浙江大學,浙江 (2004)。
66.Chen, J. W., and Chang, C. F.“High strength ecological soil materials.”,Journal of Materials in Civil Engineering, Vol.19(1),pp.149-154 (2007)
67.任玉峰、馬鴻文、王剛、馮武威、丁秋霞,「利用金礦製尾砂製備礦物聚合材料的實驗研究」,現代地質,第2期,第171~175頁 (2003)。
68.Van Jaarsveld, J. G. S., Van Deventer, J. S. J., “Effect of the alkali metal activator on the properties of fly ash-based geopolymers” , Industrial & Engineering Chemistry Research, Vol.38, 3932-3941, (1999)
69.Swanepoel, J. C., Strydom, C. A., “Utilisation of fly ash in a geopolymeric materic” , Applied Geochemistry, Vol.17(8), 1143-1148, (2002)
70.Barbosa, V. F. F., MacKenzie, K. J. D., “Thermal behaviour of inorganic geopolymers and composites derived from sodium polysialate” , Materials Research Bulletin, Vol.38, 319-331(2003)
71.陳冠宇,「鹼激發爐石基膠體配比因子對其工程性質影響之研究」,碩士論文,台灣科技大學,台北 (2010)。
72.Shi, C., and Day, R.L., “A calorimetric study of early hydration of alkali-slag cement” , Cement and Concrete Research, Vol. 25, pp. 1333~1346 (1995)
73.蕭遠智,「鹼活化電弧爐還原渣之水化反應特性」,碩士論文,國立中央大學,桃園 (2002)。
74.Brough, A.R., Holloway, M., and Sykes, J. and Atkinson, A., “Sodium silicate-based alkali-activated slag mortars Part II: The retarding effect of additions of sodium chloride or malic acid” , Cement and Concrete Research, Vol. 30, pp. 1375~1379 (2000)
75.付興華、陶文宏、孫鳳金,「水玻璃對地聚物膠凝材料性能影響的研究」,水泥工程,濟南,第二期,第6-10頁 (2008)。
76.P. Kumar Mehta, Paulo J. M. Monteiro, “Concrete”, Perntice Hall ,pp.85~87(1993)
77.Mindess, S., and Young, J.F., Concrete, Prentice-Hall Inc.,Englewood Cliffs, New Jersey (1983)

無法下載圖示 全文公開日期 2016/07/22 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE