簡易檢索 / 詳目顯示

研究生: 梁于文
YU-WEN LIANG
論文名稱: 以狀態方程式預測線性聚丙烯/二氧化碳PVT行為-以SL EOS及SS EOS為例
Prediction the PVT behavior of Linear Polypropylene-Carbon Dioxide Solution using Sanchez-Lacombe Equation of State and Simha-Somcynsky Equation of State
指導教授: 葉樹開
Shu-Kai Yeh
口試委員: 葉樹開
Shu-Kai Yeh
林祥泰
Shiang-Tai Lin
蕭育生
Yu-Sheng Hsiao
王鎮杰
Jenn-Jye Wang
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 99
中文關鍵詞: PVT 行為發泡狀態方程式
外文關鍵詞: Sanchez–Lacombe, Simha–Somcynsky
相關次數: 點閱:126下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  • 摘要 i Abstract ii 誌謝 iii 目錄 iv 圖目錄 vii 表目錄 ix 第一章 緒論 1 第二章 文獻回顧 4 2.1高分子發泡 4 2.2微發泡射出成型製程(Microcellular Injection Molding, MuCell®) 5 2.3溶解度量測 8 2.3.1壓力衰減法(pressure decay method) 9 2.3.2重力法 (Gravimetric Method) 10 2.3.2.1失重分析法 (mass-loss analysis method) 10 2.3.2.2石英晶體微量天平 (quartz crystal microbalance, QCM) 11 2.3.2.3石英彈簧法(quartz spring method) 12 2.3.2.4磁力懸浮秤(magnetic suspension balance, MSB) 13 2.4高分子及高分子/氣體PVT行為 14 2.4.1 PVT測量儀器 16 2.4.1.1密閉流體法(confining fluid apparatus) 16 2.4.1.2活塞管柱法(piston-die dilatometer) 17 2.4.1.3可視化PVT量測設備 18 2.5高分子溶液模型 20 2.5.1純經驗溶液模型 21 2.5.1.1 Tait equation 21 2.5.1.2 Henry’s Law 22 2.5.2理論溶液模型 22 2.5.2.1 Flory-Huggins 理論 22 2.5.2.2 Prigogine's Cell Model (PCM) 24 2.5.2.3 Flory-Orwoll-Vrij (FOV) model 24 2.5.2.4 Sanchez-Lacombe 25 2.5.2.5 Simha-Somcynsky Equation 26 2.5.2.6 狀態方程式列表 28 第三章 實驗方法 30 3.1實驗藥品 30 3.2 Tait equation 30 3.3 PVT測試儀 30 第四章 結果與討論 32 4.1 Linear PP (DM 55) PVT行為 32 4.2二氧化碳密度 34 4.3磁力懸浮秤(magnetic suspension balance, MSB) 34 4.4 Sanchez-Lacombe 狀態方程式 36 4.5以SL-EOS理論計算Linear PP的溶解度及溶脹比 39 4.6 SL-EOS校正溶解度計算 44 4.7 Simha-Somcynsky狀態方程式 48 4.8以SS-EOS理論計算Linear PP的溶解度及溶脹比 53 4.9 SS-EOS 校正溶解度計算 58 4.10 SS-EOS ∆x敏感度測試 62 4.11狀態方程式參數計算 63 4.12 SL-EOS、SS-EOS與可視化PVT量測設備比較 66 第五章 結論 70 參考文獻 71 附錄A 高分子/CO2熔體PVT量測與機台開發 83 附錄B Tait 方程式與PVT-6000比容對照表 91

    1. K. T. Okamoto, 2003, Microcellular processing, Hanser Publications
    2. M.-L. Wang, R.-Y. Chang, and C.-H. Hsu, 2018, Molding simulation: theory and practice. 1st ed, Hanser Publications: Cincinnati, USA, DOI: 10.3139/9781569906200.fm
    3. R. G. Wissinger and M. E. Paulaitis, 1987, Swelling and sorption in polymer–CO2 mixtures at elevated pressures. Journal of Polymer Science Part B: Polymer Physics, 25(12), p. 2497-2510, DOI: 10.1002/polb.1987.090251206.
    4. X. M. Han, C. C. Zeng, L. J. Lee, K. W. Koelling, and D. L. Tomasko, 2003, Extrusion of polystyrene nanocomposite foams with supercritical CO2. Polymer Engineering and Science, 43(6), p.1261-1275, DOI: 10.1002/pen.10107.
    5. Wong, H. Guo, V. Kumar, C. B. Park, and N. P. Suh, 2016, Microcellular plastics. Encyclopedia of Polymer Science and Technology, p. 1-57, DOI: 10.1002/0471440264.pst468.pub2.
    6. M. M. Hasan, 2013, A systematic study of solubility of physical blowing agents and their blends in polymers and their nanocomposites, Ph.D. Dissertation, Department of Mechanical and Industrial Engineering, University of Toronto
    7. M. Pantoula and C. Panayiotou, 2006, Sorption and swelling in glassy polymer/carbon dioxide systems: Part I. Sorption. The Journal of Supercritical Fluids, 37(2), p. 254-262, DOI: 10.1016/j.supflu.2005.11.001.
    8. Y. G. Li, C. B. Park, H. B. Li, and J. Wang, 2008, Measurement of the PVT property of PP/CO2 solution. Fluid Phase Equilibria, 270(1-2), p. 15-22, DOI: 10.1016/j.fluid.2008.05.007.
    9. Y. G. Li and C. B. Park, 2009, Materials and Interfaces: Effects of branching on the pressure-volume- temperature behaviors of PP/CO2 solutions. Industrial and Engineering Chemistry Research, 48(14), p. 6633-6640, DOI: 10.1021/ie8015279.
    10. M. M. Hasan, Y. G. Li, G. Li, C. B. Park, and P. Chen, 2010, Determination of solubilities of CO2 in linear and branched polypropylene using a magnetic suspension balance and a PVT apparatus. Journal of Chemical and Engineering Data, 55(11), p. 4885-4895, DOI: 10.1021/je100488v.
    11. Y. G. Li, S. H. Mahmood, and C. B. Park, 2016, Visualization for measuring the PVT property of viscoelastic polystyrene/CO2 mixtures at elevated temperatures and pressures. Polymer Testing, 55, p. 88-96, DOI: 10.1016/j.polymertesting.2016.08.010.
    12. S. Areerat, E. Funami, Y. Hayata, D. Nakagawa, and M. Ohshima, 2004, Measurement and prediction of diffusion coefficients of supercritical CO2 in molten polymers. Polymer Engineering and Science, 44(10), p. 1915-1924, DOI: 10.1002/pen.20194.
    13. Y. Sato, M. Yurugi, K. Fujiwara, S. Takishima, and H. Masuoka, 1996, Solubilities of carbon dioxide and nitrogen in polystyrene under high temperature and pressure. Fluid Phase Equilibria, 125(1-2), p. 129-138, DOI: 10.1016/s0378-3812(96)03094-4.
    14. Y. Sato, K. Fujiwara, T. Takikawa, Sumarno, S. Takishima, and H. Masuoka, 1999, Solubilities and diffusion coefficients of carbon dioxide and nitrogen in polypropylene, high-density polyethylene, and polystyrene under high pressures and temperatures. Fluid Phase Equilibria, 162(1-2), p. 261-276, DOI: 10.1016/s0378-3812(99)00217-4.
    15. X. Xu, C. B. Park; D. Xu, and P. Moulinie, 2002, PVT data modeling of ps/co2 mixtures using lattice-hole theory, in PPS-18. Guimaraes, Portugal.
    16. G. Li, F. Gunkel, J. Wang, C.B. Park, and V. Altstädt, 2007, Solubility measurements of N2 and CO2 in polypropylene and ethene/octene copolymer. Journal of Applied Polymer Science, 103(5), p. 2945-2953, DOI: 10.1002/app.25163.
    17. G. Li, S. N. Leung, M. M. Hasan, J. Wang, C. B. Park, and R. Simha, 2008, A thermodynamic model for ternary mixture systems-Gas blends in a polymer melt. Fluid Phase Equilibria, 266(1-2), p.129-142, DOI: 10.1016/j.fluid.2008.02.003.
    18. G. Li, H. Li, J. Wang, and C. B. Park, 2006, Investigating the solubility of CO2 in polypropylene using various EOS models. Cellular Polymers, 25(4), p.237-248, DOI: 10.1177/026248930602500403
    19. G. Li, J. Wang, C. B. Park, and R. Simha, 2007, Measurement of gas solubility in linear/branched PP melts. Journal of Polymer Science, Part B: Polymer Physics, 45(17), p.2497-2508, DOI: 10.1002/polb.21229.
    20. G. Li, H. Li, L. S. Turng, S. Gong, and C. Zhang, 2006, Measurement of gas solubility and diffusivity in polylactide. Fluid Phase Equilibria, 246(1), p.158-166, DOI: 10.1016/j.fluid.2006.05.030.
    21. United Nations Environment Programme Secretariat, 2019, Handbook for the Montreal Protocol.
    22. J. E. Martini-Vvedensky, N. P. Suh, and F. A. Waldman, 1984, Microcellular closed cell foams and their method of manufacture. U.S. Patent No. 4,473,665. 25.
    23. J. Xu, 2010, Microcellular injection molding. Wiley series on polymer engineering and technology, Wiley: Hoboken, N.J., USA
    24. W.G. Frizelle, 2017, Applied plastics engineering handbook 2nd ed, 10 - injection molding technology, edited by M. Kutz. William Andrew Publishing, Norwich, NY, p. 191-202, DOI: 10.1016/B978-0-323-39040-8.00010-9.
    25. C. Okolieocha, D. Raps, K. Subramaniam, and V. Altstädt, 2015, Microcellular to nanocellular polymer foams: Progress (2004–2015) and future directions–A review. European Polymer Journal, 73, p.500-519, DOI: 10.1016/j.eurpolymj.2015.11.001
    26. V. Shaayegan, L. H. Mark, A. Tabatabaei, and C. B. Park, 2016, A new insight into foaming mechanisms in injection molding via a novel visualization mold. Express Polymer Letters, 10(6), p. 462-469, DOI: 10.3144/expresspolymlett.2016.44.
    27. J. W. S. Lee, J. Wang, J. D. Yoon, and C. B. Park, 2008, Strategies to achieve a uniform cell structure with a high void fraction in advanced structural foam molding. Industrial and Engineering Chemistry Research, 47(23), p. 9457-9464, DOI: 10.1021/ie0707016.
    28. V. Shaayegan, L. H. Mark, C. B. Park, and G. Wang, 2016, Identification of cell-nucleation mechanism in foam injection molding with gas-counter pressure via mold visualization. AIChE Journal, 62(11), p. 4035-4046, DOI: 10.1002/aic.15433.
    29. V. Shaayegan, C. Wang, F. Costa, S. Han, and C. B. Park, 2017, Effect of the melt compressibility and the pressure drop rate on the cell-nucleation behavior in foam injection molding with mold opening. European Polymer Journal, 92, p.314-325, DOI: 10.1016/j.eurpolymj.2017.05.003.
    30. V. Shaayegan, G. Wang, and C. B. Park, 2016, Effect of foam processing parameters on bubble nucleation and growth dynamics in high-pressure foam injection molding. Chemical Engineering Science, 155, p. 27-37, DOI: 10.1016/j.ces.2016.07.040.
    31. V. Shaayegan, G. Wang, and C. B. Park, 2016, Study of the bubble nucleation and growth mechanisms in high-pressure foam injection molding through in-situ visualization. European Polymer Journal, 76, p.2-13, DOI: 10.1016/j.eurpolymj.2015.11.021.
    32. D. M. Newitt and K. E. Weale, 1948, 310. Solution and diffusion of gases in polystyrene at high pressures. Journal of the Chemical Society (Resumed), p. 1541-1549, DOI: 10.1039/JR9480001541.
    33. J. L. Lundberg, M. B. Wilk and M. J. Huyett, 1960, Solubilities and diffusivities of nitrogen in polyethylene. Journal of Applied Physics, 31(6), p. 1131-1132, DOI: 10.1063/1.1735771
    34. J. L. Lundberg, M. B. Wilk and M. J. Huyett, 1962, Estimation of diffusivities and solubilities from sorption studies. Journal of Polymer Science, 57(165), p. 275-299, DOI: 10.1002/pol.1962.1205716522
    35. J. L. Lundberg, E. J. Mooney and C. E. Rogers, 1969, Diffusion and solubility of methane in polyisobutylene. Journal of Polymer Science Part A-2: Polymer Physics, 7(5), p. 947-962, DOI: 10.1002/pol.1969.160070517
    36. P. L. Durrill and R. G. Griskey, 1966, Diffusion and solution of gases in thermally softened or molten polymers: Part I. Development of technique and determination of data. AIChE Journal, 12(6), p. 1147-1151, DOI: 10.1002/aic.690120619
    37. J. K. Lee, S. X. Yao, G. Li, M. B. G. Jun and P. C. Lee, 2017, Measurement methods for solubility and diffusivity of gases and supercritical fluids in polymers and its applications. Polymer Reviews, 57(4), p.695-747, DOI: 10.1080/15583724.2017.1329209.
    38. D. C. Li, T. Liu, L. Zhao and W. K. Yuan, 2009, Solubility and diffusivity of carbon dioxide in solid-state isotactic polypropylene by the pressure− decay method. Industrial & Engineering Chemistry Research, 48(15), p.7117-7124, DOI: 10.1021/ie8019483
    39. M. Pantoula, J. von Schnitzler, R. Eggers, and C. Panayiotou, 2007, Sorption and swelling in glassy polymer/carbon dioxide systems Part II—Swelling. The Journal of Supercritical Fluids, 39(3), p.426-434, DOI: 10.1016/j.supflu.2006.03.010.
    40. D. Boudouris, J. Prinos, M. Bridakis, M. Pantoula and C. Panayiotou, 2001, Measurement of HCFC-22 and HFC-152a sorption by polymers using a quartz crystal microbalance. Industrial & Engineering Chemistry Research, 40(2), p.604-611, DOI: 10.1021/ie000382h
    41. J. H. Aubert, 1998, Solubility of carbon dioxide in polymers by the quartz crystal microbalance technique. The Journal of Supercritical Fluids, 11(3), p.163-172, DOI: 10.1016/S0896-8446(97)00033-8
    42. K.-I. Miura, K. Otake, S. Kurosawa, T. Sako, T. Sugeta, T. Nakane, M. Sato, T. Tsuji, T. Hiaki, M. Hongo, 1998, Solubility and adsorption of high-pressure carbon dioxide to poly (styrene). Fluid Phase Equilibria, 144(1-2), p. 181-189, DOI: 10.1016/S0378-3812(97)00256-2
    43. D. C. Bonner and Y. L. Cheng, 1975, A new method for determination of equilibrium sorption of gases by polymers at elevated temperatures and pressures. Journal of Polymer Science: Polymer Letters Edition, 13(5), p. 259-264, DOI: 10.1002/pol.1975.130130502
    44. J. L. Duda, G. K. Kimmerly, W. L. Sigelko and J. S. Vrentas, 1973, Sorption apparatus for diffusion studies with molten polymers. Industrial & Engineering Chemistry Fundamentals, 12(1), p. 133-136, DOI: 10.1021/i160045a024
    45. Y. Zhang, K. K. Gangwani, and R. M. Lemert, 1997, Sorption and swelling of block copolymers in the presence of supercritical fluid carbon dioxide. The Journal of Supercritical Fluids, 11(1-2), p. 115-134, DOI: 10.1016/S0896-8446(97)00031-4
    46. R. Kleinrahm and W. Wagner, 1986, Measurement and correlation of the equilibrium liquid and vapour densities and the vapour pressure along the coexistence curve of methane. The Journal of Chemical Thermodynamics, 18(8), p.739-760, DOI: 10.1016/0021-9614(86)90108-4
    47. B. I. Chaudhary and A. I. Johns, 1998, Solubilities of nitrogen, isobutane and carbon dioxide in polyethylene. Journal of Cellular Plastics, 34(4), p. 312-328, DOI: 10.1177/0021955X9803400403
    48. Y. Sato, M. Wang, S. Takishima, H. Masuoka, T. Watanabe, and Y. Fukasawa, 2004, Solubility of butane and isobutane in molten polypropylene and polystyrene. Polymer Engineering and Science, 44(11), p. 2083-2089, DOI: 10.1002/pen.20213.
    49. Y. Sato, K. Inohara, S. Takishima, H. Masuoka, M. Imaizumi, H. Yamamoto, and M. Takasugi, 2000, Pressure-volume-temperature behavior of polylactide, poly(butylene succinate), and poly(butylene succinate-co-adipate). Polymer Engineering and Science, 40(12), p. 2602-2609, DOI: 10.1002/pen.11390.
    50. A. Kitagishi, S. Takizawa, Y. Sato, and H. Inomata, 2019, Measurement and prediction of solubilities and diffusion coefficients of ethylene in rubbery propylene copolymers. Fluid Phase Equilibria, 492, p. 110-117, DOI: 10.1016/j.fluid.2019.03.028.
    51. Z. Lei, H. Ohyabu, Y. Sato, H. Inomata, and R.L. Smith, 2007, Solubility, swelling degree and crystallinity of carbon dioxide–polypropylene system. The Journal of Supercritical Fluids, 40(3), p. 452-461, DOI: 10.1016/j.supflu.2006.07.016.
    52. Y. Sato, T. Takikawa, M. Yamane, S. Takishima, and H. Masuoka, 2002, Solubility of carbon dioxide in PPO and PPO/PS blends. Fluid Phase Equilibria, 194-197, p. 847-858, DOI: 10.1016/S0378-3812(01)00687-2.
    53. Y. Sato, T. Takikawa, A. Sorakubo, S. Takishima, H. Masuoka and M. Imaizumi, 2000, Solubility and diffusion coefficient of carbon dioxide in biodegradable polymers. Industrial & Engineering Chemistry Research, 39(12), p. 4813-4819, DOI: 10.1021/ie0001220
    54. T. Ougizawa, 1996, PVT behavior of polymers. Review of high pressure science and technology/Koatsuryoku No Kagaku To Gijutsu, 5(4), p. 216-223, DOI: 10.4131/jshpreview.5.216.
    55. D. Walsh and P. Zoller, 1995, Standard pressure volume temperature data for polymers, CRC press. Boca Raton, FL, United States
    56. M. Hess, 2004, The use of pressure‐volume‐temperature measurements in polymer science in macromolecular symposia. Macromolecular Symposia, 214, p. 361-379, DOI: 10.1002/masy.200451027
    57. J. He, Y.A. Fakhreddine, and P. Zoller, 1992, Maintaining hydrostatic conditions during solidification of polymers in a high-pressure dilatometer. Journal of Applied Polymer Science, 45(4), p. 745-747, DOI: 10.1002/app.1992.070450421.
    58. P. Zoller and Y. A. Fakhreddine, 1994, Pressure—Volume—Temperature studies of semi-crystalline polymers. Thermochimica Acta, 238, p. 397-415, DOI: 10.1016/S0040-6031(94)85221-9
    59. P. Zoller, 1977, The specific volume of poly(4‐methylpentene‐1) as a function of temperature (30°–320°C) and pressure (0–2000 kg/cm2). Journal of Applied Polymer Science, 21(11), p. 3129-3137, DOI: 10.1002/app.1977.070211123.
    60. P. Zoller, 1978, The specific volume of poly(tetrafluoroethylene) as a function of temperature (30°–372°C) and pressure (0–2000 kg/cm2). Journal of Applied Polymer Science, 22(3), p. 633-641, DOI: 10.1002/app.1978.070220305.
    61. P. Zoller and H. H. Hoehn, 1982, Pressure-volume-temperature properties of blends of poly(2,6-dimethyl-1,4-phenylene ether) with polystyrene. Journal of Polymer Science: Polymer Physics Edition, 20(8), p. 1385-1397, DOI: 10.1002/pol.1982.180200805.
    62. J.-F. Luyé, G. Régnier, Ph. Le Bot, D. Delaunay, and R. Fulchiron, 2001, PVT measurement methodology for semicrystalline polymers to simulate injection-molding process. Journal of Applied Polymer Science, 79(2), p. 302-311, DOI: 10.1002/1097-4628(20010110)79:2<302::Aid-app120>3.0.Co;2-i.
    63. H. Breuer and R. Kosfeld, 1965, Compressibility and volume expansion of pvc and solvent in the presence of nitrogen. Plasticization and Plasticizer Processes (Advances in Chemistry), 48, p. 125-139, DOI: 10.1021/ba-1965-0048.ch012
    64. S. Matsuoka and B. Maxwell, 1958, Response of linear high polymers to hydrostatic pressure. Journal of Polymer Science, 32(124), p. 131-159, DOI: 10.1002/pol.1958.1203212412.
    65. M. Lei, C.G. Reid, and P. Zoller, 1988, Stresses and volume changes in a polymer loaded axially in a rigid die. Polymer, 29(10), p. 1784-1788, DOI: 10.1016/0032-3861(88)90391-6.
    66. P. Zoller, P. Bolli, V. Pahud, and H. Ackermann, 1976, Apparatus for measuring pressure–volume–temperature relationships of polymers to 350 °C and 2200 kg/cm2. Review of Scientific Instruments, 47(8), p. 948-952, DOI: 10.1063/1.1134779.
    67. G. Li, 2007, Thermodynamic investigation of the solubility of physical blowing agents in polymer melts., Ph.D. Dissertation, Department of Mechanical and Industrial Engineering, University of Toronto
    68. Y. G. G. Li, 2008, Development of a novel visualization and measurement apparatus for the PVT behaviours of polymer /gas solutions, Ph.D. Dissertation, Department of Mechanical and Industrial Engineering, University of Toronto
    69. P. Tait, 1888, Physics and Chemistry of the Voyage of HMS Challenger. Vol. II, Part IV, SP LXI.
    70. J. H. Dymond and R. Malhotra, 1988, The Tait equation: 100 years on. International Journal of Thermophysics, 9(6), p.941-951, DOI: 10.1007/BF01133262.
    71. P. A. Rodgers, 1993, Pressure–volume–temperature relationships for polymeric liquids: A review of equations of state and their characteristic parameters for 56 polymers. Journal of Applied Polymer Science, 48(6), p.1061-1080, DOI: 10.1002/app.1993.070480613
    72. M. Lee, C. B. Park and C. Tzoganakis, 1999, Measurements and modeling of PS/supercritical CO2 solution viscosities. Polymer Engineering and Science, 39(1), p.99-109, DOI: 10.1002/pen.11400
    73. P. L. Durrill and R. G. Griskey, 1969, Diffusion and solution of gases into thermally softened or molten polymers: Part II. Relation of diffusivities and solubilities with temperature pressure and structural characteristics. AIChE Journal, 15(1), p.106-110, DOI: 10.1002/aic.690150124.
    74. T. J. Hayward, 1967, Compressibility equations for liquids: a comparative study. British Journal of Applied Physics, 18(7), p.965-977, DOI: 10.1088/0508-3443/18/7/312
    75. P. I. Freeman and J. S. Rowlinson, 1960, Lower critical points in polymer solutions. Polymer, 1, p. 20-26, DOI: 10.1016/0032-3861(60)90004-5
    76. P.J. Flory, 1953, Principles of polymer chemistry. Polymer, 23(1), p. 159, DOI: 10.1016/0032-3861(82)90040-4
    77. Prigogine, 1958, The molecular theory of solutions. Physics Today, 11(6), p. 36, DOI: 10.1063/1.3062616
    78. Prigogine, N. Trappeniers, and V. Mathot, 1953, Statistical thermodynamics of r-MERS and r-MER solutions. Discussions of the Faraday Society, 15, p. 93-107, DOI: 10.1039/df9531500093
    79. J. V. Sengers, R. Kayser, C. Peters, and H. White, 2000, Equations of state for fluids and fluid mixtures, Elsevier.
    80. Prigogine, A. Bellemans, and C. Naar‐Colin, 1957, Theorem of corresponding states for polymers. The Journal of Chemical Physics, 26(4), p. 751-755, DOI: 10.1063/1.1743399
    81. P. J. Flory, R. A. Orwoll, and A. Vrij, 1964, Statistical thermodynamics of chain molecule liquids. i. An Equation of State for Normal Paraffin Hydrocarbons. Journal of the American Chemical Society, 86(17), p. 3507-3514, DOI: 10.1021/ja01071a023.
    82. P. J. Flory, R. A. Orwoll, and A. Vrij, 1964, Statistical thermodynamics of chain molecule liquids. II. Liquid Mixtures of Normal Paraffin Hydrocarbons. Journal of the American Chemical Society, 86(17), p. 3515-3520, DOI: 10.1021/ja01071a024.
    83. R. Simha and T. Somcynsky, 1969, On the statistical thermodynamics of spherical and chain molecule fluids. Macromolecules, 2(4), p. 342-350, DOI: 10.1021/ma60010a005
    84. P. A. Rodgers, 1993, Pressure–volume–temperature relationships for poly(vinylidene fluoride) and polyamide-11. Journal of Applied Polymer Science, 50(12), p. 2075-2083, DOI: 10.1002/app.1993.070501205.
    85. R. Y. Chang, C. C. Wang, and C. H. Hsu, Testing module and measuring apparatus having the same, U.S. Patent No. 10,422,784
    86. E. Nies, A. Stroeks, R. Simha, and R.K. Jain, 1990, LCST phase behavior according to the Simha-Somcynsky theory: application to the n-hexane polyethylene system. Colloid & Polymer Science, 268(8), p. 731-743, DOI: 10.1007/BF01411104.
    87. H. Xie and R. Simha, 1997, Theory of solubility of gases in polymers. Polymer International. Polymer International, 44(3), p. 348-355. DOI: 10.1002/(SICI)1097-0126(199711)44:3<348::AID-PI877>3.0.CO;2-I
    88. S.E. Hachani, A. Alchekh wis, Z. Necira, N. Nebbache, A. Meghezzi and G. Ozkoc, 2018, Effects of magnesia incorporation on properties of polystyrene/magnesia composites. Acta Chimica Slovenica, 65(3), p. 646-651, DOI: 10.17344/acsi.2018.4305

    無法下載圖示 全文公開日期 2024/08/09 (校內網路)
    全文公開日期 2024/08/09 (校外網路)
    全文公開日期 2024/08/09 (國家圖書館:臺灣博碩士論文系統)
    QR CODE