簡易檢索 / 詳目顯示

研究生: 鐘文宏
Wen-hung Chung
論文名稱: 氧化釕及氧化銥(110)晶面之表面還原分析
Surface Study on Deoxygenation of RuO2 and IrO2 (110)
指導教授: 蔡大翔
Dah-Shyang Tsai
口試委員: 江志強
Jyh-Chiang Jiang
黃鶯聲
Ying-Sheng Huang
周更生
Kan-Sen Chou
萬本儒
Ben-Zu Wan
楊耀文
Yaw-Wen Yang
洪偉修
Wei-Hsiu Hung
學位類別: 博士
Doctor
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 133
中文關鍵詞: 氧化釕氧化銥單晶
外文關鍵詞: IrO2, RuO2, (110), single crystal, XRD, STM, Raman, XPS, DFT, reduction
相關次數: 點閱:259下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

氧化釕與氧化銥(110)晶面之脫氧行為的研究可讓我們瞭解還原路徑與可能的反應位置。本研究利用拉曼光譜、X射線光電子能譜、掃描式穿隧顯微鏡、掃描式電子顯微鏡與X射線繞射分析氧化釕與氧化銥(110)之晶面。在過去的研究中,我們發現氧化釕與氧化銥奈米級的觸媒經過還原後可看到顯著提升的觸媒活性,此一現象驅使我進一步研究氧化釕與氧化銥(110)晶面的脫氧行為。
氧化釕與氧化銥屬於導電性的金屬氧化物。其晶體傾向於沿著c-軸生長並展現出(110)優選晶面。氧化釕(110)表面經過882 K還原後,可在其表面上發現許多沿著[001]方向延伸的裂縫及氧化態與金屬共存的表面。拉曼圖譜中新增的190 cm-1特徵峰可推論為金屬釕的貢獻,並隨著還原程度的增加而觀察到氧化釕Eg, A1g, B2g模式的強度降低。利用spatial correlation model擬合Eg特徵峰可估算表面上剩餘的氧化釕晶體大小。另外,583 K還原的XPS結果亦發現非均勻還原的現象。
於403 ~ 493 K還原後的氧化銥(110)晶面利用了同步輻射光源進行脫氧行為的核層光電子能譜與全電子密度泛函數理論計算的分析。較容易還原的氧化銥晶體在383 K還原後,核層光電子能譜可發現二種表層訊號:1f-cus-Ir(單重次未飽和配位的銥原子)與被Otop覆蓋的前述銥原子。逐步增加還原溫度可發現1f-cus-Ir訊號迅速消失;同時間1f-cus-Ir + Otop complex訊號減弱了卻持續出現,直至表面完全還原成金屬狀態,此一現象可利用DFT計算結果加以解釋。經過DFT計算,吾可發現相鄰成對的Otop原子結合脫附主導了表面的脫氧行為。在超高真空環境中Otop原子可藉由Obr原子與O3f原子的移動補充。因此,在表面完全還原成金屬狀態前,Otop原子變成了一種具有活性且持續存在於表面的氧原子。而在實際觸媒應用的環境中,Otop原子可藉由分解氣相中吸附的氧分子補充。由此可知在二種環境中,表面的Otop原子於觸媒中扮演著重要的角色。


Deoxygenation of the RuO2 and IrO2 (110) surfaces has been investigated to understand their reduction pathways and the probable active sites of partially reduced surface. In the present study, snapshots of the RuO2 and IrO2 surfaces are analyzed during thermal reduction, using microRaman spectroscopy, X-ray photoelectron spectroscopy (XPS), scanning tunneling microscopy (STM), scanning electron microscopy (SEM), and X-ray diffraction analysis (XRD). Motivation of the current research arises from the recent experimental results, gathered by our research group, which pointed out a dramatic enhancement in catalytic activity after reduction of RuO2 and IrO2 nanophase materials.
RuO2 and IrO2 of rutile structure belong to the oxide family of metallic conductivity, well reputed for their electrocatalytic applications. Growth of RuO2 and IrO2 crystals in its c-axis can be employed to develop one-dimensional structures with preferential (110) surface. The study on RuO2 (110) reduced surface reveals fissures elongated in the [001] direction, and coexistence of the oxide and the metallic phase on the partially reduced surface. A new Raman feature at 190 cm-1 has been observed as the Ru metal phase emerges, accompanying with the degradation of Eg, A1g, B2g modes for RuO2 when the single crystal was heated at 882 K. The grain size of residual RuO2 can be correlated from the broadening and shifting of Eg mode, using spatial correlation model. Analysis of Ru-3d and O-1s signals generated with an in-house XPS instrument also indicate the RuO2 (110) decomposes inhomogeneously at 583 K.
Using a more intense X-ray synchrotron radiation source, deoxygenation of IrO2 (110) was analyzed between 403 and 493 K with the core-level spectroscopy (CLS). The assignment of surface features is assisted with the all-electron density functional calculations (DFT). Since iridium is a more noble metal, the IrO2 (110), baked out at 383 K, exhibits two surface features of 1f-cus-Ir (one-fold coordinated unsaturated Ir atom) with and without on-top oxygen (Otop), implying the surface is somewhat oxygen rich. Progressively increasing the reduction temperature, the 1f-cus-Ir feature quickly disappears and the signal of 2f-cus-Ir (two-fold coordinated unsaturated Ir atom) emerges at 403 K. Meanwhile the feature of 1f-cus-Ir + Otop diminishes but persists when the Ir metal signal is evident. The coexistence of 1f-cus-Ir + Otop and Ir metal at 433 – 443 K is explained in the theoretical pathway study. DFT calculation reveals that O2 desorption via pairing two neighboring Otop atoms is the rate-determining step of surface deoxygenation. Under the ultra high vacuum (UHV) conditions, Otop is replenished via migration of the surface oxygen species, including the threefold coordinated oxygen (O3f) of a reduced surface. Hence the Otop atom is an active and long-lived surface species, which does not vanish until O3f is consumed and surface Ir atoms begin to cluster. Under the realistic pressure conditions, Otop can also be refreshed via the dissociative adsorption of gas-phase oxygen. In either pathway, Otop is a critical intermediary of IrO2 (110) for its oxidation catalysis.

Abstract………………………………………………………………………………...i Contents……………………………………………………………………………….iv List of Figures………………………………………………………………………..vii List of Tables………………………………………………………………………….xi Chapter 1 Introduction………………………………………………………………...1 1.1 Background…………………………………………………………………..2 1.2 Ruthenium metal (Ru)………………………………………………………..8 1.3 Ruthenium dioxide (RuO2)………………………………………………….12 1.4 The applications of Ru and RuO2…………………………………………...18 1.5 Iridium metal (Ir)……………………………………………………………20 1.6 Iridium Dioxide (IrO2)…………………………………………………...…22 1.7 The applications of Ir and IrO2……………………………………………..23 Chapter 2 Experimental Details……………………………………………………...25 2.1. Raw Materials……………………………………………………………..26 2.1.1. RuO2 single crystal……………………………………………..26 2.1.2. IrO2 single crystal………………………………………………26 2.2. Instrumentals………………………………………………………………27 2.2.1. Atomic Force Microscope (AFM)………………………………27 2.2.2. micro-Raman Spectroscopy…………………………………….29 2.2.3. Scanning Electron Microscope (SEM)…………………………30 2.2.4. Scanning Tunneling Microscope (STM)……………………….31 2.2.5. X-ray Photoelectron Microscope (XPS)………………………..32 2.2.6. X-ray Diffraction (XRD)………………………………………..34 2.3. Experimental Procedures…………………………………………………..35 2.4. Methodology of DFT calculations…………………………………………39 Chapter 3 Results and Discussions…………………………………………………...42 3.1. Thermally decomposed (110) surface of RuO2 single crystal……………..43 3.1.1. Anisotropic decomposition and structure analysis……………...43 3.1.2. Raman scattering and spatial correlation model analysis……….50 3.1.3. XPS analysis…………………………………………………….63 3.2. Deoxygenation of IrO2 (110) surface: Core-level Spectroscopy and DFT calculation…………………………………………………………………67 3.2.1. Core-level spectra of Ir-4f for reduced IrO2 (110) surface……...67 3.2.2. Energetic analysis of surface deoxygenation…………………...78 3.1. The pathways of deoxygenation………………………………..88 Chapter 4 Conclusions…………………………………………………………...…..90 4.1. Thermally decomposed (110) surface of RuO2 single crystal……….91 4.2. Deoxygenation of IrO2 (110) surface………………………………..92 Appendix-1…………………………………………………………………………..93 1.1. Raman Spectroscope………………………………………………………94 1.2. Scanning Tunneling Microscope (STM)…………………………………..98 1.3. X-ray Photoelectron Microscope (XPS)………………………………….100 Appendix-2………………………………………………………………………….105 1.1. XRD pattern of RuO2 single crystal and its reference……………………106 2.2. JCPDS database of Ru metal…………………….……………………….107 2.3. XRD pattern of IrO2 single crystal and its reference……………………..108 2.4. The STM image of IrO2 (110)……………………………………………109 References…………………………………………………………………………..110 Publications…………………………………………………………………………124

1. Carrette, L., K.A. Friedrich, and U. Stimming, Fuel cells - fundamentals and applications. Fuel cells, 2001. 1(1): pp. 5-39.
2. Tasic, G.S., Miljanic, S.S., Kaninski, M.P.M., Saponjic, D.P. and Nikolic, V.M., Non-noble metal catalyst for a future Pt free PEMFC. Electrochemistry Communications, 2009. 11(11): pp. 2097-2100.
3. Starz, K.A., Auer, E., Lehmann, T. and Zuber, R., Characteristics of platinum-based electrocatalysts for mobile PEMFC applications. Journal of Power Sources, 1999. 84(2): pp. 167-172.
4. Wohlfahrt-Mehrens, M. and J. Heitbaum, Oxygen evolution on Ru and RuO2 electrodes studied using isotope labelling and on-line mass spectrometry. Journal of Electroanalytical Chemistry, 1987. 237: pp. 251-260.
5. Ioroi, T., Kitazawa, N., Yasuda, K., Yamamoto, Y. and Takenaka, H., Iridium oxide/platinum electrocatalysts for unitized regenerative polymer electrolyte fuel cells. Journal of The Electrochemical Society, 2000. 147(6): pp. 2018-2022.
6. Fierro, S., Nagel, T., Baltruschat, H. and Comninellis, C., Investigation of the oxygen evolution reaction on Ti/IrO2 electrodes using isotope labelling and on-line mass spectrometry. Electrochemistry Communications, 2007. 9(8): pp. 1969-1974.
7. Takasu, Y., N. Yoshinaga, and W. Sugimoto, Oxygen reduction behavior of RuO2/Ti, IrO2/Ti and IrM (M: Ru, Mo, W, V) Ox/Ti binary oxide electrodes in a sulfuric acid solution. Electrochemistry Communications, 2008. 10(4): pp. 668-672.
8. Di Blasi, A., D'Urso, C., Baglio, V., Antonucci, V., Arico, A. S., Ornelas, R., Matteucci, F., Orozco, G., Beltran, D., Meas, Y. and Arriaga, L. G., Preparation and evaluation of RuO2-IrO2, IrO2-Pt and IrO2-Ta2O5 catalysts for the oxygen evolution reaction in an SPE electrolyzer. Journal of Applied Electrochemistry, 2009. 39(2): pp. 191-196.
9. Zhang, Y., Zhang, H., Ma, Y., Cheng, J., Zhong, H., Song, S. and Ma, H., A novel bifunctional electrocatalyst for unitized regenerative fuel cell. Journal of Power Sources, 2010. 195(1): pp. 142-145.
10. Hendriksen, B.L.M. and J.W.M. Frenken, CO Oxidation on Pt(110): Scanning Tunneling Microscopy Inside a High-Pressure Flow Reactor. Physical Review Letters, 2002. 89(4): pp. 046101-(1-4).
11. Wang, J.G., Li, W. X., Borg, M., Gustafson, J., Mikkelsen, A., Pedersen, T. M., Lundgren, E., Weissenrieder, J., Klikovits, J., Schmid, M., Hammer, B. and Andersen, J. N., One-dimensional PtO2 at Pt steps: formation and reaction with CO. Physical Review Letters, 2005. 95(25): pp. 256102-(1-4).
12. Gabasch, H., Knop-Gericke, A., Schlögl, R., Borasio, M., Weilach, C., Rupprechter, G., Penner, S., Jenewein, B., Hayek, K. and Klötzer, B., Comparison of the reactivity of different Pd–O species in CO oxidation. Physical Chemistry Chemical Physics, 2007. 9(4): pp. 533-540.
13. Over, H., Kim, Y. D., Seitsonen, A. P., Wendt, S., Lundgren, E., Schmid, M., Varga, P., Morgante, A. and Ertl, G., Atomic-scale structure and catalytic reactivity of the RuO2(110) surface. Science, 2000. 287(5457): pp. 1474 - 1476.
14. Over, H. and M. Muhler, Catalytic CO oxidation over ruthenium-bridging the pressure gapp. Progress in Surface Science, 2003. 72: pp. 3-17.
15. Liu, Z.PP., S.J. Jenkins, and D.A. King, Car exhaust catalysis from first principles: selective NO reduction under excess O2 conditions on Ir. Journal of the American Chemical Society, 2004. 126(34): pp. 10746-10756.
16. Khatua, S., G. Held, and D.A. King, Model car-exhaust catalyst studied by TPD and TP-RAIRS: Surface reactions of NO on clean and O-covered Ir{1 0 0}. Surface Science, 2005. 586(1-3): pp. 1-14.
17. Hayden, B.E., K. Kretzschmar, and A.M. Bradshaw, A TPD and IR study of co-adsorption of NO and oxygen on Ru(001.) Surface Science, 1983. 125(2): pp. 366-376.
18. Root, T.W., L.D. Schmidt, and G.B. Fisher, Adsorption and reaction of nitric oxide and oxygen on Rh(111). Surface Science, 1983. 134(1): pp. 30-45.
19. Xu, H. and K.Y.S. Ng, Molecular NO islands versus O and N islands on Rh(111) surface studied by scanning tunneling microscopy Surface Science, 1996. 365(3): pp. 779-788.
20. Mukerji, R.J., A.S. Bolina, and W.A. Brown, An investigation of the effect of pre-dosed O atoms on the adsorption of NO on Pt{2 1 1}. Surface Science, 2003. 547(1-2): pp. 27-44.
21. Inderwildi, O.R., Lebiedz, D., Deutschmann, O. and Deutschmann, O., Influence of coadsorbates on the NO dissociation on a Rhodium(311) surface. ChemPhysChem, 2005. 6(12): pp. 2513-2521.
22. Inderwildi, O.R., Lebiedz, D., Deutschmann, O. and Warnatz, J., Influence of initial oxygen coverage and magnetic moment on the NO decomposition on rhodium (111). Journal of Chemical Physics, 2005. 122(15): pp. 154702-(1-7).
23. Nyberg, C. and PP. Uvdal, The adsorption of nitric oxide on an oxygen covered Pd(100) surface. Surface Science, 1991. 256(1-2): pp. 42-49.
24. Chen, W., Stottlemyer, A. L., Chen, J. G., Kaghazchi, P., Jacob, T. T., Madey, T. E. and Bartynski, R. A., Adsorption and decomposition of NO on O-covered planar and faceted Ir(2 1 0). Surface Science, 2009. 603(20): pp. 3136-3144
25. Huang, S.H., Susanti, D., Tsai, D. S., Hsieh, Y. C., Huang, Y. S. and Chung, W. H., Structures and catalytic properties of PtRu electrocatalysts prepared via the reduced RuO2 nanorods Array. Langmuir, 2008. 24(6): pp. 2785-2791.
26. Jian, X.H., Tsai, D. S., Chung, W. H., Huang, Y. S. and Liu, F. J., Pt–Ru and Pt–Mo electrodeposited onto Ir–IrO2 nanorods and their catalytic activities in methanol and ethanol oxidation. Journal of Materials Chemistry, 2009. 19(11): pp. 1601-1607.
27. Bolzan, A.A., Fong, C., Kennedy, B. J. and Howard, C. J., Structure studies of rutile-type metal dioxides. Acta Crystallographica Section B, 1997. 53: pp. 373-380.
28. Mattheiss, L.F., Electronic structure of RuO2, OsO2, and IrO2. Physical Review B, 1976. 13(6): pp. 2433-2450.
29. Ryden, W.D., A.W. Lawson, and C.C. Sartain, Electrical transport properties of IrO2 and RuO2. Physical Review B, 1970. 1(4): pp. 1494.
30. Schafer, M.W. and J. Armstrong, Transition metal oxide conductors in integrated circuits. IBM Technical Disclosure Bulletin, 1978. 20(11A): p. 4633.
31. Hunt, L.B. and F.M. Lever, Availability of The platinum metals: a survey of productive resources to industrial Uses. Platinum Metals Review, 1969. 13(4): pp. 126-138.
32. Rao, C., Chemical and electrochemical depositions of platinum group metals and their applications. Coordination Chemistry Reviews, 2005. 249: p. 613-631.
33. Schutz, R.W., Ruthenium enhanced titanium alloys. Platinum Metals Review, 1996. 40(2): pp. 54-61.
34. Steele, B.C.H. and A. Heinzel, Materials for fuel-cell technologies. Nature, 2001. 414(6861): pp. 345-352.
35. Kuhn, A.T. and C.J. Mortimer, The kinetics of chlorine evolution and reduction on titanium-supported metal oxides especially RuO2 and IrO2. Journal of The Electrochemical Society, 1973. 120(2): pp. 231-236.
36. Cornell, A. and D. Simonsso, Ruthenium dioxide as cathode material for hydrogen evolution in hydroxide and chlorate solutions. Journal of The Electrochemical Society, 1993. 140(11): pp. 3123-3129.
37. Trasatti, S. and G. Buzzanca, Ruthenium dioxide: a new interesting electrode material. Solid state structure and electrochemical behavior. Journal of Electroanalytical Chemistry Interfacial Electrochemistry, 1971. 29: pp. A1-A5.
38. Vadimsky, R.G., R.PP. Frankenthal, and D.E. Thompson, Ru and RuO as electrical contact materials: preparation and environmental interactions. Journal of The Electrochemical Society, 1979. 126: pp. 2017-2023.
39. Bai, G.R., Tsu, I.-F., Wang, A., Foster, C. M., Murray, C. E. and Dravid, V. P., In situ growth of highly oriented Pb(Zr0.5Ti0.5)O3 thin films by low-temperature metal–organic chemical vapor deposition. Applied Physics Letters, 1998. 72(13): pp. 1572-1574.
40. Kolawa, E., So, F. C. T., Pan, E. T.-S. and Nicolt, M.-A., Reactively sputtered RuO2 diffusion barriers. Applied Physics Letters, 1987. 50: pp. 854-844.
41. Hsieh, C.S., Tsai, D. S., Chen, R. S. and Huang, Y. S., Preparation of ruthenium dioxide nanorods and their field emission characteristics. Applied Physics Letters, 2004. 85(17): pp. 3860-3862.
42. Hsieh, C.S., Wang, G., Tsai, D. S., Chen, R. S. and Huang, Y. S., Field emission characteristics of ruthenium dioxide nanorods. Nanotechnology, 2005. 16: pp. 1885-1891.
43. Korotcov, A., Huang, Y. S., Tsai, T. S., Tsai, D. S. and Tioang, K. K., Effect of length, spacing and morphology of vertically aligned RuO2 nanocrystals on field emission properties. Nanotechnology, 2006. 17: pp. 3149.
44. Jia, Q.x., Shi, Z. Q., Jiao, K. L. and Anderson, W. A., Reactively sputtered RuO2 thin film resistor with near zero temperature coefficient of resistance. Thin Solid Films, 1991. 196: pp. 29-34.
45. Zhang, Y., C. Wang, and N. Wan, Mao, Z., Deposited RuO2-IrO2/Pt electrocatalyst for the regenerative fuel cell. International Journal of Hydrogen Energy, 2007. 32(3): pp. 400-404.
46. Hunt, L.B., A history of iridium. Platinum Metals Review, 1987. 31(1): pp. 32-41.
47. Huang, Y.-S. and PP.-C. Liau, Growth and characterization of IrO2 single crystals. Chinese Journal of Physics, 1987. 25: pp. 232-242.
48. Kumar, V., Selvanathan, D., Kuliev, A., Kim, S., Flynn, J. and Adesida, I., Characterisation of iridium Schottky contacts on n-AlxGa1-xN. Electronics Letters, 2003. 39(3): pp. 747-748.
49. Ioroi, T. and K. Yasuda, Platinum-iridium alloys as oxygen reduction electrocatalysts for polymer electrolyte fuel cells. Journal of the Electrochemical Society, 2005. 152(10): pp. A1917-A1924.
50. Yao, W., Yang, J., Wang, J. and Nuli, Y., Chemical deposition of platinum nanoparticles on iridium oxide for oxygen electrode of unitized regenerative fuel cell. Electrochemistry Communications, 2007. 9(5): pp. 1029-1034.
51. Lee, K., L. Zhang, and J. Zhang, IrxCo1-x (x = 0.3–1.0) alloy electrocatalysts, catalytic activities, and methanol tolerance in oxygen reduction reaction. Journal of Power Sources, 2007. 170(2): pp. 291-296.
52. Yoshinaga, N., W. Sugimoto, and Y. Takasu, Oxygen reduction behavior of rutile-type iridium oxide in sulfuric acid solution. Electrochimica Acta, 2008. 54(2): pp. 566-573.
53. Neyerlin, K.C., Bugosh, G., Forgie, R., Liu, Z. and Strasser, P., Combinatorial study of high-surface-area binary and ternary electrocatalysts for the oxygen evolution reaction. Journal of The Electrochemical Society, 2009. 156(3): pp. B363-B369.
54. Lee, K., L. Zhang, and J. Zhang, A novel methanol-tolerant Ir-Se chalcogenide electrocatalyst for oyxgen reduction. Journal of Power Sources, 2007. 165(1): pp. 108-113.
55. Liu, G. and H. Zhang, Facile synthesis of carbon-supported IrxSey chalcogenide nanoparticles and their electrocatalytic activity for the oxygen reduction reaction. Journal of Physical Chemistry C, 2008. 112(6): pp. 2058-2065.
56. Nishio, K., Y. Watanabe, and T. Tsuchiya, Preparation and properties of electrochromic iridium oxide thin film by sol-gel process Thin Solid Films, 1999. 350(1-2): pp. 96-100.
57. Chalamala, B.R., Wei, Y., Rossi, G., Smith, B. G. and R,euss R. H., Fabrication of iridium field emitter arrays. Applied Physics Letters, 2000. 77(20): pp. 3284-3286.
58. Chalamala, B.R., Reuss, R. H., Dean, K. A., Sosa, E. and Golden, D. E., Field emission charateristics of iridium oxide tips. Journal of Applied Physics, 2002. 91(9): pp. 6141-6146.
59. Chen, R.S., Huang, Y. S., Liang, Y. M., Hsieh, C. S., Tsai, D. S. and Tiong, K. K., Field emission from vertically aligned conductive IrO2 nanorods. Applied Physics Letters, 2004. 84(9): pp. 1552-1554.
60. Chiang, D.C.-S., Lei, Z.-F. P., Barrowcliff, R. and Zhang, F., Field enhancement and work function difference of IrO2 nano-emitter arrays using EFM and SKPM spectroscopy. NSTI-Nanotech, 2006. 3: pp. 288-291.
61. Yao, S., M. Wang, and M. Madouz, A pH electrode based on melt-oxidized iridium oxide. Journal of The Electrochemical Society, 2001. 148(4): pp. H29-H36.
62. Lue, J.C. and S. Chao, Fabrication and characterization of IrO2-based microsensors for fast detection of carbon dioxide. Japanese Journal of Applied Physics Part 1, 1997. 36(4A): pp. 2292-2297.
63. Nakamura, T., Nakao, Y., Kamisawa, A. and Takasu, H., Preparation of Pb(Zr,Ti)O3 thin films on electrodes including IrO2. Applied Physics Letters, 1994. 65(12): pp. 1522-1524.
64. Fujitani, T., Nakamura, I., Takahashi, A., Haneda, M. and Hamada, H., Kinetics and mechanism of NO reduction with CO on Ir surfaces. Journal of Catalysis, 2008. 253: pp. 139-147.
65. Zhu, R., M. Guo, and F. Ouyang, Simultaneous removal of soot and NOx over Ir-based catalysts in the presence of oxygen. Catalysis Today, 2008. 139(1-2): pp. 146-151.
66. Matsumoto, M., Ogura, S., Fukutani, K. and Okano, T., Room temperature observation of nitric oxide on Ir(111) by scanning tunneling microscopy. Surface Science, 2009. 603(19): pp. 2928-2934.
67. Nakamura, I. and T. Fujitani, Adsorption behavior and reaction properties of NO and CO on Ir(111) and Rh(111). Catalysis Surveys from Asia, 2009. 13(1): pp. 22-29.
68. Huang, Y.S., H.L. Park, and F.H. Pollak, Growth and characterization of RuO2 single crystal. Materials Research Bulletin, 1982. 17: pp. 1305-1312.
69. Scientific, T.V., Avantage data spectrum processing. 2005, Thermo VG Scientific.
70. Hesse, R., Unifit 2002. 2002, University of Leipzig. Universal spectrum processing program for ESCA-spectra.
71. Kresse, G. and J. Hafner, Ab initio molecular dynamics for liquid metals. Physical Review B, 1993. 47(1): p. 558.
72. Kresse, G. and J. Furthmuller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Physical Review B, 1996. 54(16): pp. 11169–11186
73. Perdew, J.PP., Electronic structure of solids, ed. PP. Ziesche and H. Eschrig. Vol. 91. 1991, Berlin: Akademie Verlag.
74. Kresse, G. and D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method. Physical Review B, 1999. 59(3): pp. 1758–1775
75. Zhang, H., Soon, A., Delley, B. and Stampfl, C., Stability, structure, and electronic properties of chemisorbed oxygen and thin surface oxides on Ir(111). Physical Review B, 2008. 78(4): pp. 045436 -045447.
76. Delley, B., An all-electron numerical method for solving the local density functional for polyatomic molecules. Journal of Chemical Physics, 1990. 92(1): pp. 508-517.
77. Delley, B., From molecules to solids with the DMol3 approach. Journal of Chemical Physics, 2000. 113(18): pp. 7756-7764.
78. Materials Studio. 2007, Accelrys Inc.: San Diego, CA.
79. Kim, Y.D., Seitsonen, A. P., Wendt, S., Wang, J., Fan, C., Jacobi, K., Over, H. and Ertl, G., Characterization of various oxygen species on an oxide surface: RuO2(110). The Journal of Physical Chemistry B, 2001. 105(18): pp. 3752-3758.
80. Bo‥ttcher, A. and H. Niehus, Oxygen adsorbed on oxidized Ru(0001). Physical Review B, 1999. 60(20): pp. 14396–14404.
81. Huang, Y.S. and F.H. Pollak, Raman investigation of rutile RuO2. Solid State Communications, 1982. 43(12): pp. 921-924.
82. Rosenblum, S.S., W.H. Weber, and B.L. Chamberland, Raman-scattering observation of the rutile-to-CaCl2 phase transition in RuO2. Physical Review B, 1997. 56(2): pp. 529-533.
83. Gao, J.S. and Z.Q. Tian, Surface Raman spectroscopic studies of ruthenium, rhodium and palladium electrodes deposited on glassy carbon substrates. Spectrochimica Acta Part A, 1997. 53: pp. 1595-1600.
84. Fleischmann, M., PP.J. Hendra, and A.J. McQuillan, Raman spectra of pyridine adsorbed at a silver electrode. Chemical Physics Letters, 1974. 26(2): pp. 163-166.
85. Kim, S.H. and J. Wintterlin, Morphology of RuO2(110) oxide films on Ru(0001) studied by scanning tunneling microscopy. Journal of Chemical Physics, 2009. 131: pp. 064705.
86. Korotcov, A.V., Huang, Y. S., Tiong, K. K. and Tsai, D. S., Raman scattering characterization of well-aligned RuO2 and IrO2 nanocrystals. Journal of Raman Spectroscopy, 2007. 38(6): pp. 737-749.
87. Leonardy, A., Hung, W. Z., Tsai, D. S., Chou, C. C. and Huang, Y. S., Structural features of SnO2 nanowires and Raman spectroscopy analysis. Crystal Growth & Design, 2009. 9(9): pp. 3958–3963.
88. Richter, H., Z.PP. Wang, and L. Ley, The one phonon Raman spectrum in microcrystalline silicon. Solid State Communications, 1981. 39(5): pp. 625-629.
89. Campbell, I.H. and PP.M. Fauchet, The effects of microcrystal size and shape on the one phonon Raman spectra of crystalline semicaonductors. Solid State Communications, 1986. 58(10): pp. 739-741.
90. Kittel, C., Introduction to solid state physics. 1996, Wiley: New York. p. 106.
91. Razdow, A., Mathcad 2001 Pro. 2001, Mathsoft: Cambridge, Massachusetts.
92. Goel, A.K., G. Skorinko, and F.H. Pollak, Optical properties of single-crystal rutile RuO2 and IrO2 in the range 0.5 to 9.5 eV. Physical Review B, 1981. 24(12): pp. 7342-7350.
93. Over, H., Seitsonen, A. P., Lundgren, E., Wiklund, M. and Andersen, J. N., Spectroscopic characterization of catalytically active surface sites of a metallic oxide. Chemical Physics Letters, 2001. 342: pp. 467-472.
94. Blume, R., Ha‥vecker, M., Zafeiratos, S., Teschner, D., Knop-Gericke, A., Schlo‥gl, R., Dudin, P., Barinov, A. and Kiskinova, M., Oxidation of methanol on Ru catalyst: Effect of the reagents partial pressures on the catalyst oxidation state and selectivity. Catalysis Today, 2007. 124: pp. 71-79.
95. Cha, S.Y. and Lee, H.C., Deoxidization of iridium oxide thin film. Japanese Journal of Applied Physics, 1999. 38: pp. L1128-L1130.
96. Wertheim, G.K. and H.J. Guggenheim, Conduction-electron screening in metallic oxides: IrO2. Physical Review B, 1980. 22(10): pp. 4680-4683.
97. Hara, M., Assami, K., Hashimoto, K. and Masumoto, T., An X-ray photoelectron spectroscopic study of electrocatalytic activity of platinum group metals for chlorine evolution. Electrochimica Acta, 1983. 28(8): pp. 1073-1081.
98. Peuckert, M., XPS study on thermally and electrochemically prepared oxidic adlayers on iridium. Surface Science, 1984. 144(2-3): pp. 451-464.
99. Atanasoska, L., R. Atanasoski, and S. Trasatti, XPS and AES study of mixed layers of RuO2 and IrO2. Vacuum, 1990. 40(1-2): pp. 91-94.
100. Horng, R.H., Wuu, D. S., Wu, L. H. and Lee, M. K., Formation process and material properties of reactive sputtered IrO2 thin films. Thin Solid Films, 2000. 373: pp. 231-234.
101. Thanawala, S., Georgiev, D. G., Baird, R. J. and Auner, G., Characterization of iridium oxide thin films deposited by pulsed-direct-current reactive sputtering. Thin Solid Films, 2007. 515: pp. 7059–7065.
102. Reuter, K. and M. Scheffler, Surface core-level shifts at an oxygen-rich Ru surface: O/Ru(0 0 0 1) vs. RuO2(1 1 0). Surface Science, 2001. 490(1-2): pp. 20-28.
103. Gladys, M.J., Ermanoski, I., Jackson, G., Quinton, J. S., Rowe, J. E. and Madey, T. E., A high resolution photoemission study of surface core-level shifts in clean and oxygen-covered Ir(2 1 0) surfaces. Journal of Electron Spectroscopy and Related Phenomena, 2004. 135: pp. 105-112.
104. van der Veen, J.F., F.J. Himpsel, and D.E. Eastman, Structure-dependent 4f—core-level binding energies for surface atoms on Ir(111), Ir(100)-(5 × 1), and metastable Ir(100)-(1 × 1). Physical Review Letters, 1980. 44(3): pp. 189-192.
105. Barrett, N.T., Guillot, C., Villette, B., Tréglia, G. and Legrand, B., Inversion of the core level shift between surface and subsurface atoms of the Ir (100)(1 × 1) and (100)(5 × 1) surfaces. Surface Science, 1991. 251/252: pp. 717-721.
106. Chung, W.H., Tsai, D.S., Chen, Y.M., Huang, Y.S., Chou, C.C. and Liu, C.-h. J., Thermally decomposed (110) surface of RuO2 single crystal. Solid State Communications, 2008. 146: pp. 462-467.
107. He, Y.B., Stierle, A., Li, W. X., Farkas, A., Kasper, N. and Over, H., Oxidation of Ir(111): From O-Ir-O trilayer to bulk oxide formation. The Journal of Physical Chemistry C, 2008. 112(31): pp. 11946–11953.
108. Pai, W.W., Wu, T. Y., Lin, C. H., Wang, B. X., Huang, Y. S. and Chou, H. L., A cross-sectional scanning tunneling microscopy study of IrO2 rutile single crystals. Surface Science, 2007. 601: pp. L69-L72.
109. Sanderson, A.C., Surface-enhanced Raman scattering from a modified silver electrode, in Physics and Astronomy. 2007, University of Victoria: Ottawa, Canada.
110. Wiesendanger, R., Scanning probe microscopy and spectroscopy: methods and applications. 1994, Cambridge: Cambridge University Press.
111. Hanke, L.D., Handbook of analytical methods for materials. 2001, Minnesota: Material Evaluation and Engineering, Inc.
112. Moulder, J.F., Stickle, W. F., Sobol, P. E. and Bomben, K. D., Handbook of X-ray photoelectron spectroscopy: A reference book of standard spectra for identification and interpretation of XPS data. 1995: Physical Electronics.

QR CODE