Basic Search / Detailed Display

Author: 黃忠彬
Chung-Bin Huang
Thesis Title: 高壓直流電源主機板研發設計在伺服器產業的發展策略-以M公司為例
Server Industry Development Strategy of High Voltage DC Power Motherboard Design - A Case Study of M Company
Advisor: 施劭儒
Shao-Ju Shih
陳俊男
Chun-Nan Chen
Committee: 陳俊男
Chun-Nan Chen
施劭儒
Shao-Ju Shih
王丞浩
Chen-Hao Wang
Degree: 碩士
Master
Department: 工程學院 - 高階科技研發碩士學位學程
Executive Master of Research and Development
Thesis Publication Year: 2023
Graduation Academic Year: 111
Language: 中文
Pages: 71
Keywords (in Chinese): 雲端服務商波特五力分析技術藍圖
Keywords (in other languages): Cloud Service Provider, Off-The-Shelf
Reference times: Clicks: 223Downloads: 0
Share:
School Collection Retrieve National Library Collection Retrieve Error Report
  • 本研究探討高壓直流電源架構的主機板設計在雲端服務商(CSP)與OTS (Off-The-Shelf) 產品的發展策略。通信系統與資料中心的伺服器被歸納為高可 靠度的設備,AI (Artificial Intelligence)、HPC (High Performance Computing)伺服器以及全球邊緣運算的市場需求與日俱增,但是每個客戶機房電源架構卻不盡相同,因此,總擁有成本在今天的資料中心和電信設施的建設計畫中受到了重視,本研究建議個案公司提出高壓直流電源設計架構的技術發展策略,在應用上可以同時與低壓直流電源系統兼容,如此一來就不需重新配置資料中心的主機板電源設計,除了有效縮短產品研發時程之外,更提供客戶節省用電成本的解決方案;本研究藉由PESTLE、波特五力、SWOT、T-Plan進行分析個案公司的經營環境、條件能力、資源運用來規劃公司未來三年的關鍵技術與產品研發策略,進而促成伺服器產品高壓直流電源架構之技術轉型趨勢,搶得市場先機,提高個案公司在雲端服務商與自有品牌產品的市場競爭優勢。


    This study explores the development strategies of cloud service providers (CSPs) and off-the-shelf (OTS) products in the design of high-voltage direct current (HVDC) power supply architectures. Communication systems and data center servers are classified as highly reliable devices, and there is a growing demand for AI (Artificial Intelligence), HPC (High Performance Computing) servers, and global edge computing.
    However, each customer's data center power infrastructure varies, making the total cost of ownership a significant consideration in today's data centers and telecommunications facilities. This study proposes that the case company implement a technical development strategy for HVDC power supply design architecture that is compatible with low-voltage direct current (LVDC) power supply systems.
    By doing so, there is no need to reconfigure the power supply design of the data center's motherboards. In addition to effectively shortening the product development timeline, this approach provides a cost-saving solution for customers' electricity consumption.
    This research analyzes the case company's business environment, capability conditions, and resource utilization through PESTLE、Porter's Five Forces、SWOT analysis, and T-Plan to plan the company's key technologies and product development strategies for the next three years. This process aims to facilitate the transformation trend of server products towards HVDC power supply architectures, seize market opportunities, and enhance the case company's competitive advantage in the market of cloud service providers and proprietary brand products.

    摘要 Abstract 誌謝 目錄 表目錄 圖目錄 第一章 緒論 1.1 研究背景 1.2 研究動機 1.3 研究目的 1.4 研究流程 第二章 文獻探討 2.1 伺服器主機板直流電源設計分類 2.1.1 12V直流電源架構 2.1.2 48V直流電源架構 2.1.3 48V/12V 混合直流電源架構 2.2 高低壓直流電源主機板設計分析 2.2.1 12V低壓直流供電挑戰 2.2.2 48V高壓直流供電優勢 2.3 電力系統輸電架構分析 2.3.1 電力系統演進分析 2.3.2 電力系統成本分析 2.4 資料中心伺服器用電量分析 2.5 產品策略性規劃工具 2.5.1 PESTLE 2.5.2 波特五力 2.5.3 SWOT 2.5.3 T-Plan策略技術藍圖 第三章 市場分析 3.1 全球伺服器市場趨勢 3.2 高壓直流(HVDC)傳輸市場規模 3.3 市場CPU與GPU廠商節能發展趨勢 3.4 小結 第四章 研究結果 4.1 研究個案公司介紹 4.2 研究分析 4.2.1 科技S型曲線 4.2.2 PESTLE分析 4.2.3 波特五力分析 4.2.2 高壓直流伺服器主機板SWOT分析 4.3 布局與策略 第五章 結論與建議 5.1 結論 5.2 未來發展與建議

    [1] B. Andersen, and C. Barker, “A new era in HVDC?,” IEE Review, vol. 46, no. 2,
    pp. 33-39, 2000.
    [2] C. W. Gellings, "A globe spanning super grid," in IEEE Spectrum, vol. 52, no. 8,
    pp. 48-54, August 2015.
    [3] Clark W. Gellings, "Chapter 5 Electricity’s Value to Society," in Exploring the
    Value of Electricity , River Publishers, pp.85-122, 2015.
    [4] K. Liu, Z. Wang, and G. Yang, "Overview of Operation Challenges in HVDC
    Projects." pp. 94-95, 2020.
    [5] K. Hirose, "DC powered data center with 200 kW PV panels." pp. 822-825, 2018.
    [6] J. D. Paez, D. Frey, J. Maneiro, S. Bacha, and P. Dworakowski, “Overview of DC–
    DC converters dedicated to HVdc grids,”IEEE Transactions on Power Delivery, vol.
    34, no. 1, pp. 119-128, 2018.
    [7] J. Baek, Y. Elasser, and M. Chen, “3D LEGO-PoL: A 93.3% efficient 48V-1.5 V 450A
    merged-two-stage hybrid switched-capacitor converter with 3D vertical coupled
    inductors,”, pp. 1321-1327, 2021.
    [8] M. Choi, and D.-K. Jeong, "18.6 A 92.8%-peak-efficiency 60A 48V-to-1V 3-level
    half-bridge DC-DC converter with balanced voltage on a flying capacitor,", pp.
    296-298, 2020.
    [9] S. Qi, W. Sun, and Y. Wu, "Comparative analysis on different architectures of
    power supply system for data center and telecom center." pp. 26-29, 2017.
    [10] K. Usui, T. Babasaki, K. Hirose, and Y. Yoshida, "Dual-voltage output power
    supply system toward parallel use of 380Vdc and 48Vdc." pp. 1-5, 2016.
    [11] M. H. Ahmed, F. C. Lee, and Q. Li, "LLC converter with integrated magnetics
    application for 48V rack architecture in future data centers." pp. 437-443,
    2019.
    [12] A. Fiore, Q. Huang, and A. Q. Huang, "Loss Model and Output Impedance Analysis
    of a 48V-to-1V High Current Point-of-Load Converter." pp. 938-942, 2020.
    [13] Z. Ye, R. A. Abramson, Y.-L. Syu, and R. C. Pilawa-Podgurski, "MLB-PoL: A high
    performance hybrid converter for direct 48 V to point-of-load applications." pp.
    1-8, 2020.
    [14] M. Ursino, S. Saggini, S. Jiang, and C. Nan, "High density 48V-to-PoL VRM with
    hybrid pre-regulator and fixed-ratio buck." pp. 498-505, 2020.
    [15] R. Das, and H.-P. Le, "A regulated 48V-to-1V/100A 90.9%-efficient hybrid
    converter for POL applications in data centers and telecommunication systems."
    pp. 1997-2001.
    [19] M. Ursino, R. Rizzolatti, G. Deboy, S. Saggini and K. Zufferli, "High density
    Hybrid Switched Capacitor Sigma Converter for Data Center Applications,",
    Houston, TX, USA, pp. 35-39, 2022.
    [20] Dirk Van Hertem, Oriol Gomis-Bellmunt, Jun Liang, "Comparison of HVAC and HVDC
    technologies," in HVDC Grids: For Offshore and Supergrid of the Future , IEEE,
    pp.79-96, 2016
    [21] Harry Soin(2021). Standardization,Energy Savings Drive 48-V Power in the Data
    Center.
    Web site: https://www.powerelectronicsnews.com/7-pen-ebook-dec-21-
    standardization-energy-savings-drive-48-v-power-in-the-data-center/
    [22] STEVE TARANOVICH (2019). Data center power in 2019. EDN.
    Web site: https://www.edn.com/data-center-power-in-2019/
    [23] Steve Taranovich(2016). data center next generation power supply solutions for
    improved efficiency. EDN.
    Web site: https://www.edn.com/data-center-next-generation-power-supply-
    solutions-for-improved-efficiency/
    [24] Rick Merritt(2016). Google, Intel Prep 48V Servers.
    Web site: https://www.eetimes.com/google-intel-prep-48v-servers/?
    [25] Dave Sterlace(2020). Direct current in the data center: Are we there
    yet?.Hitachi Energy.
    Web site: https://www.datacenterdynamics.com/en/opinions/direct-current-data-
    center-are-we-there-yet/
    [26] Matthew Hirsch(2016). Feature-HVDC on the Rise. EPRI Journal.
    Web site: https://eprijournal.com/hvdc-on-the-rise/
    [27] James McKenzie (2018). Tesla versus Edison: lessons from the AC/DC war. Physics
    World.
    Web site: https://physicsworld.com/a/tesla-versus-edison-lessons-from-the-ac-
    -dc-war/
    [28] ViCOR (2018). Why are Power Designs Moving to 48V?.
    [29] EDN(2016). 48V direct-conversion dramatically improves data-center energy
    efficiency
    Web site: https://www.edn.com/48v-direct-conversion-dramatically-improves-data-
    center-energy-efficiency/
    [30] 悅智網 (2017)。覆蓋全球的超級電網:將區域電網互連,實現跨洲電力交換。網址
    https://kknews.cc/finance/26m4j5g.html

    無法下載圖示 Full text public date 2028/07/25 (Intranet public)
    Full text public date 2033/07/25 (Internet public)
    Full text public date 2033/07/25 (National library)
    QR CODE