簡易檢索 / 詳目顯示

研究生: 陳品璇
Pin-Hsuan Chen
論文名稱: 應用於低軌道衛星通訊接收端之K-頻帶七位元數位控制向量合成相移器
A K-Band 7-Bit Digital-Controlled Vector-Sum Phase Shifter for LEO Satellite Communication Receiver
指導教授: 陳筱青
Hsiao-Chin Chen
口試委員: 楊成發
Chang-Fa Yang
邱弘緯
Hung-Wei Chiu
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 76
中文關鍵詞: 相移器8位元數位類比轉換器相位誤差振幅誤差漏電流負載效應
外文關鍵詞: Phase shifter, 8-bit current DAC, phase error, amplitude error, gate leakage, loading effect
相關次數: 點閱:213下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

應用於低軌道衛星通訊接收端之K-頻帶主動式七位元數位控制向量合成相移器已實現並使用台積電 TSMC 90-nm CMOS製程. 相移器由正交全通濾波器和一個8位元數位類比轉換器(IDAC)偏壓的類比向量加法器組成。本研究探討了相移器的相位精度受到IDAC的解析度和加法器I/Q輸入的相位誤差影響。電晶體閘極存在漏電流的問題已解決,來提高偏壓電路的準確性,使得8位元IDAC可以達到INL為-0.26至0.13 LSB, DNL為-0.013至0.007 LSB。對於阻抗匹配,將匹配元件電感設計在QAF和加法器之間,並且分析了負載效應對於加法器的輸入振幅誤差和輸入相位誤差的影響。根據測量結果,相移器的RMS相位誤差為0.17°至0.19°,RMS振幅誤差為1.11至1.9 dB。在17-21 GHz頻段內,平均增益為-3.31至1.28 dB。晶片核心尺寸為0.76 mm^2。相移器在1.2 V供應電壓下總功耗為8.4 mW。


An active type 7-bit vector-sum phase shifter (VSPS) with digital control is designed and implemented using TSMC 90-nm CMOS technology for K-band (17-21 GHz) low earth orbit satellite communication. The phase shifter consists of a resonance-based quadrature all-pass filter and an analog vector adder that is biased with 8-bit current digital-to-analog converters (IDACs). In this work, how the phase accuracy of the phase shifter is influenced by the resolution of the current DAC and phase error of the adder I/Q inputs is investigated. The leakage current issue has been resolved to improve the accuracy of bias circuits so that the 8-bit IDAC can achieve the INL of -0.26 ~ 0.13 LSB and DNL of -0.013 ~ 0.007 LSB. For impedance matching, inductors are inserted between the QAF and the adder, and the input amplitude error and the input phase error of the adder are formulated to consider the impact of the loading effect. According to measurement results, the phase shifter exhibits the RMS phase error of 0.17° to 0.19° and the RMS amplitude error of 1.11 to 1.9 dB. The average gain is -3.31 ~ 1.28 dB over the 17-21 GHz. The core chip size is 0.76 mm^2. The phase shifter dissipates the total power consumption of 8.4 mW from the 1.2 V supply voltage.

摘要 I Abstract II 誌謝 III Contents V List of Figures VII List of Tables XI Chapter 1 Introduction 1 1.1 Background and motivation 1 1.2 Organization 4 Chapter 2 System structure 5 2.1 Structure of active vector sum phase shifter 5 Chapter 3 Circuit design 7 3.1 Quadrature signal generator 7 3.1.1 Quadrature All-Pass Filter (QAF) 7 3.2 Analog differential adder 9 3.3 Bias circuits 12 3.3.1 Constant-gm 12 3.3.2 Short Channel Effects 14 3.4 DAC 16 3.4.1 DAC Resolution 17 3.4.2 Unit Current Cell Design 18 3.4.3 DAC Common Centroid Layout 24 Chapter 4 Measurement result 26 Chapter 5 Loading effect analysis 40 5.1 Loading effect 40 5.1.1 Amplitude error analysis 40 5.1.2 Gain variation analysis 45 5.1.3 Phase error analysis 48 5.1.4 Loading effect under unequal weighting 54 Chapter 6 Conclusion 59 Reference 60

Reference
[1] X. Fu et al., "A 3.4mW/element Radiation-Hardened Ka-Band CMOS Phased-Array Receiver Utilizing Magnetic-Tuning Phase Shifter for Small Satellite Constellation," 2022 IEEE International Solid- State Circuits Conference (ISSCC), 2022, pp. 90-92
[2] A. AlAmoudi and R. Langley, "Design of Inverted F antenna for low earth orbit (LEO) satellite application," 2009 3rd European Conference on Antennas and Propagation, 2009, pp. 1896-1899
[3] C. Lin, S. Chang, C. Chang and Y. Shu, "Design of a Reflection-Type Phase Shifter With Wide Relative Phase Shift and Constant Insertion Loss," in IEEE Transactions on Microwave Theory and Techniques, vol. 55, no. 9, pp. 1862-1868, Sept. 2007
[4] R. P. Coats, "An Octave-Band Switched-Line Microstrip 3-b Diode Phase Shifter," in IEEE Transactions on Microwave Theory and Techniques, vol. 21, no. 7, pp. 444-449, Jul. 1973
[5] F. Ellinger, H. Jackel and W. Bachtold, "Varactor-loaded transmission-line phase shifter at C-band using lumped elements," in IEEE Transactions on Microwave Theory and Techniques, vol. 51, no. 4, pp. 1135-1140, April 2003
[6] W. Shin and G. M. Rebeiz, "60 GHz active phase shifter using an optimized quadrature all-pass network in 45nm CMOS," 2012 IEEE/MTT-S International Microwave Symposium Digest, Montreal, QC, Canada, 2012, pp. 1-3
[7] K. Koh and G. M. Rebeiz, "0.13-μm CMOS Phase Shifters for X-, Ku-, and K-Band Phased Arrays," in IEEE Journal of Solid-State Circuits, vol. 42, no. 11, pp. 2535-2546, Nov. 2007
[8] Y. -T. Chang, Z. -W. Ou, H. Alsuraisry, A. Sayed and H. -C. Lu, "A 28-GHz Low-Power Vector-Sum Phase Shifter Using Biphase Modulator and Current Reused Technique," in IEEE Microwave and Wireless Components Letters, vol. 28, no. 11, pp. 1014-1016, Nov. 2018
[9] B. Cetindogan, E. Ozeren, B. Ustundag, M. Kaynak and Y. Gurbuz, "A 6 Bit Vector-Sum Phase Shifter With a Decoder Based Control Circuit for X-Band Phased-Arrays," in IEEE Microwave and Wireless Components Letters, vol. 26, no. 1, pp. 64-66, Jan. 2016
[10] F. Qiu, H. Zhu, L. Wu, W. Che and Q. Xue, "A 15–38 GHz Vector-Summing Phase-Shifter With 360° Phase-Shifting Range Using Improved I/Q Generator," in IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 68, no. 10, pp. 3199-3203, Oct. 2021
[11] Delos, Peter, Bob Broughton, and Jon Kraft. "Phased array antenna patterns-part 1: Linear array beam characteristics and array factor." Analog Dialogue 54.2 (2020): 1-8
[12] Butzen, Paulo Francisco, and Renato Perez Ribas. "Leakage current in sub-micrometer cmos gates." Universidade Federal do Rio Grande do Sul (2006): 1-28
[13] M. J. M. Pelgrom, A. C. J. Duinmaijer, and A. P. G. Welbers, "Matching properties of MOS transistors," in IEEE Journal of Solid-State Circuits, vol. 24, no. 5, pp. 1433-1439, 1989
[14] K. -J. Koh and G. M. Rebeiz, "0.13-μm CMOS Phase Shifters for X-, Ku-, and K-Band Phased Arrays," in IEEE Journal of Solid-State Circuits, vol. 42, no. 11, pp. 2535-2546, Nov. 2007
[15] F. Qiu, H. Zhu, L. Wu, W. Che and Q. Xue, "A 15–38 GHz Vector-Summing Phase-Shifter With 360° Phase-Shifting Range Using Improved I/Q Generator," in IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 68, no. 10, pp. 3199-3203, Oct. 2021
[16] Zhou, H. J. Qian and X. Luo, "High-Resolution Wideband Vector-Sum Digital Phase Shifter With On-Chip Phase Linearity Enhancement Technology," in IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 68, no. 6, pp. 2457-2469, June 2021
[17] S. Wang, J. Park and S. Hong, "A K-Band Variable-Gain Phase Shifter Based on Gilbert-Cell Vector Synthesizer With RC–RL Poly-Phase Filter," in IEEE Microwave and Wireless Components Letters, vol. 31, no. 4, pp. 393-396, April 2021, doi: 10.1109/LMWC.2021.3056881.
[18] F. Qiu, H. Zhu, W. Che and Q. Xue, "A K-Band Full 360° Phase Shifter Using Novel Non-Orthogonal Vector Summing Method," in IEEE Journal of Solid-State Circuits, vol. 58, no. 5, pp. 1299-1309, May 2023, doi: 10.1109/JSSC.2023.3238728.
[19] Wu et al., "A Ku-Band 6-Bit Vector-Sum Phase Shifter With Half-Quadrant Control Technique," in IEEE Access, vol. 8, pp. 29311-29318, 2020
[20] G. Cheng, W. Wu, J. -D. Zhang and Q. Chen, "Analysis and Design of a Ku-Band Bidirectional Time-Varying Vector-Sum Phase Shifter in 0.13-μm CMOS Technology," in IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 70, no. 3, pp. 929-933, March 2023, doi: 10.1109/TCSII.2022.3218241.
[21] Y. -J. Liang, K. -C. Chiang, Y. -H. Lin, H. Alsuraisry, J. -H. Tsai and T. -W. Huang, "A 19-GHz 5-Bit Switch-Type Phase Shifter Design Using Phase Compensation Techniques," 2021 IEEE International Symposium on Radio-Frequency Integration Technology (RFIT), Hualien, Taiwan, 2021, pp. 1-3
[22] W. Gao and D. Zhao, "K-band 360° Passive Vector Modulator Phase Shifter with Coupled Line Qadrature Coupler and Passive Transistor Array," 2021 IEEE MTT-S International Wireless Symposium (IWS), Nanjing, China, 2021, pp. 1-3

無法下載圖示
全文公開日期 2028/08/29 (校外網路)
全文公開日期 2028/08/29 (國家圖書館:臺灣博碩士論文系統)
QR CODE