簡易檢索 / 詳目顯示

研究生: 陳亮棠
Liang-tang Chen
論文名稱: 分析、設計、製造廣泛用途的LED能量分佈透鏡之簡易方法
A Simplified Approach for Analyzing, Designing, and Producing LED Power Distribution Lenses for Diverse Applications
指導教授: 李三良
San-Liang Lee
凱紀德
Gerd Keiser
口試委員: 徐世祥
Shih-Hsiang Hsu
黃勝廣
none
唐耀宗
none
黃彥儒
Yen-ru Huang
學位類別: 博士
Doctor
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 104
中文關鍵詞: 發光二極體照明設計光學模擬
外文關鍵詞: LED, Illumination design, Optical simulatioin
相關次數: 點閱:272下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 發光二極體(LED)在許多新的綠色照明的應用上極具吸引力,其最重要因素為其低消耗功率,另外當然也還有其他各種優點,像是高可靠性,使用壽命長,以及顏色選擇性佳等等。然而,由於發光二極體大都是使用半球透鏡進行封裝,如何搭配各式透鏡來收集並重新分佈其配光是一個重要的課題。
    設計一個有效的方法來使發光二極體的配光投射並分佈到特定表面有其困難度,目前大多數的方法需要複雜的數學運算及複雜的優化程序。本文介紹一個簡單且精確度高的幾何光學分析方法來達成此效果,此設計由全反射準直透鏡和菲涅耳透鏡所構成。一旦完成整體設計後,這些透鏡可以依照客戶需求,很容易的製造而成達到特定光強度分佈,或特定照度分佈的效果。
    為了表現出實際的應用,文中提到兩種被廣泛使用的照明設計改良方式。第一個是多功能透鏡,它可以簡單地被放置在準直MR16透鏡的出射表面,主要用於不同應用環境的照明。第二個例子為利用全反射準直透鏡搭配菲涅耳透鏡,並用於提高飛機閱讀燈的照明分佈。


    Light-emitting diodes (LEDs) are highly attractive for many new green technology illumination applications. A key reason for this interest results from the low power consumption with high light output of LEDs, and the additional advantages of good reliability, long lifetimes, and a variety of color selections. However, because LEDs emit light into a hemisphere, some type of lens is needed for collection and distribution of the emitted light into a specific pattern for various applications. Devising an efficient optical method for distributing high-radiance LED emissions onto target surfaces is a continuing challenge. Most current design methods are mathematically complex and require intricate optimizations. In this thesis, a simple and highly accurate geometric optics analysis is described for creating a free-form total internal reflection collimator lens and a Fresnel exit lens. Once the design is completed, these lenses can be fabricated easily for producing specific intensity distributions desired by customers. To show some practical implementations, design examples are given for improvements in two widely used lighting applications. The first is a versatile lens that can simply be placed at the exit surface of standard MR16 bulbs for creating customer-desired illumination patterns. The second example is a lens for improving the illumination distribution of LED-based aircraft reading lights.

    1. Introduction 1 1.1. Current Development of LED Lighting 1 1.2. TIR lens introduction 4 1.3. Thesis Overview 7 1.4. Explanation of the Basic design Process 10 2. Fundamentals 13 2.1. Photometry 13 (1) Luminous flux (Φ) 14 (2) Luminous intensity (I) 15 (3) Irradiance or Illuminance. (E) 16 (4) Radiance or Luminance (L) 17 2.2. Fresnel loss 19 2.3. Near-field measurement 21 3. TIR Collimator Lens Design 25 3.1. Collimation analysis of the incident surface 25 3.2. Collimation analysis of the TIR surface 27 3.3. CAD Tool 33 3.4. Simulation Tool 35 3.5. Simulation result for collimator TIR lens using ideal point source 37 3.6. Virtual Focus 43 3.7. Simulation result for collimator TIR lens using near-field source 46 4. Micro lens Design 49 4.1. Exit Surface Design for a Fresnel Lens 49 4.2. Conservation of Energy Analysis 52 4.3. Simulation Results for a Fresnel Lens 55 4.4. Optimization and Application for Fresnel Lenses 65 4.4.1. Optimization 65 4.4.2. MR16 67 4.4.3. Aircraft Reading Light 72 5. Conclusion 87 References 89

    1. C.A. Yuan, C.N. Han, H.M. Liu, and W.D. van Driel, chap. 2, "Solid-State Lighting Technology in a Nutshell," pp. 13-42, in W. D. van Driel and X. J. Fan, . Solid State Lighting Reliability: Components to Systems, Springer, New York, 2013.
    2. U.S. Dept. of Energy, Energy Savings Potential of Solid-State Lighting in General Illumination Applications, Jan. 2012.
    3. U.S. Dept. of Energy, Solid-State Lighting Research and Development: Multiyear Program Plan, May 2014.
    4. M. -H. Chang, D. Das, P. V. Varde, and M. Pecht, Microelectron. Reliab., vol. 52, pp. 762-782, May 2012.
    5. D. H. Flores and J. M. Anderson: LEDs and Solid-State Lighting: Energy Savings Potential and a Manufacturing Roadmap, Nova Science Publishers, 2012.
    6. S. Paolini, “Solid-state lighting in buildings: status and future,” Proc. SPIE, vol. 7784, art. 77840K, 1 Sept. 2010.
    7. F. Chen, K. Wang, Z. Qin, D. Wu, X. Luo, and S. Liu “Design method of high-efficient LED headlamp lens,” Opt. Express, vol. 18, no. 20, pp. 20926-20938, 27 Sept. 2010.
    8. X. H. Lee, I. Moreno, and C. C. Sun, “High-performance LED street lighting using microlens arrays,” Opt. Express, vol. 21, no. 9, pp. 10612-10621, 6 May 2013.
    9. S. Zhao, K. Wang, F. Chen, D. Wu, and S.Liu, “Lens design of LED searchlight of high brightness and distant spot,” J. Optical Soc. Am. A, vol. 28, no. 5, pp. 815-820, May 2011.
    10. M. Cole, “Solid-state lighting: The new normal in lighting,” IEEE Trans. Industry Appl., vol. 5, iss. 1, pp. 109-119, Jan.-Feb. 2015.
    11. Genesis Photonics, “LED lighting market opportunities,” presentation given Dec. 2013; http://www.gpiled.com.
    12. S. Nakamura and G. Fasol, The Blue Laser Diode: GaN Based Light Emitters and Lasers, Springer, Berlin, 1997.
    13. S. Nakamura, T. Mukai, and M. Senoh, “Candela-class high-brightness InGaN/AlGaN double-heterostructure blue-light-emitting diodes,” Appl. Phys. Lett., vol. 64, pp. 1687-1689, Mar. 1994.
    14. S. Nakamura, M. Senoh, N. Iwasa, and S. Nagahama, “High-brightness InGaN blue, green, and yellow light-emitting diodes with quantum well structures,” Jpn. J. Appl. Phys., vol. 34, pp. L797-L799, July 1995.
    15. Industrial Technology Research Institute (ITRI) of Taiwan, http://www.itri.org.te/eng.
    16. Display Research, Quarterly LED Lighting and Display Supply/Demand Report, 2013.
    17. W.A. Parkyn and D.G. Pelka, “New TIR lens applications for light-emitting diodes,” SPIE Proc. Nonimaging Optics, vol. 3139, p. 135, 3 Oct. 1997.
    18. H. Ries and J. Muschaweck, “Tailored freeform optical surfaces,” J. Opt. Soc. Am. A, vol. 19, no. 3, pp. 590–595, 1 Mar. 2002.
    19. W. Zhang, Q. Liu, H. Gao, and F. Yu, “Free-form reflector optimization for general lighting,” Optical Engineering, vol. 49, pp. 063003(1-7), June 2010.
    20. F. R. Fournier, W. J. Cassarly, and J. P. Rolland, “Optimization of single reflectors for extended sources,” Proc. SPIE, vol. 7103, art. 71030I, 20 Sept. 2008.
    21. M. G. Turner and K. J. Garcia, “Optimization using rational Bézier control points and weighting factors,” Proc. SPIE, vol. 7061, art. 70610H, 11 Sept. 2008.
    22. Y. R. Huang, L. T. Chen, G. Keiser, S. L. Lee, and J. Wu, “ A simple design approach for a precise freeform TIR lens for LED light distribution patterns,” 9th Intl Conf. Optics-Photonics Design and Fab. (ODF'14) Tokyo, Japan, Feb. 2014.
    23. McNeel North America, http://www.en.na.mcneel.com
    24. Breault Research Organization, http://www.breault.com
    25. Cree, Inc., http://www.cree.com/products/xlamp.asp
    26. M. Bass (ed.), Handbook of Optics Volume II - Devices, Measurements and Properties, 2nd Ed., McGraw-Hill, New York, 1995, pp. 24-40 through 24-47.
    27. W. Wolfe, Introduction to Radiometry, SPIE Press, Bellingham, WA 1998.
    28. http://en.wikipedia.org/wiki/Photometry_(optics)
    29. http://www.pioneer-uv.com/glossary.htm#L
    30. http://www.giangrandi.ch/optics/lmcdcalc/lmcdcalc.shtml
    31. http://zh.wikipedia.org/wiki/%E5%85%89%E9%80%9A%E9%87%8F
    32. http://en.wikipedia.org/wiki/Fresnel_equations
    33. B.E.A. Saleh and M. C. Teich, Fundamentals of Photonics, 2nd ed., Wiley, Hoboken, NJ, 2007.
    34. C.A. Diarzio, Optics for Engineers, CRC Press, Boca Raton, FL, 2012.
    35. www.philipslumileds.com/uploads/54/DS51-pdf
    36. I. Ashdown and M. Salsbury, “A near-field goniospectroradiometer for LED measurements,” Proc. SPIE 6342, International Optical Design Conference 2006, article 634215, July 17, 2006.
    37. L.-T. Chen, G. Keiser, Y.-R. Huang, and S.-L. Lee, “A simple design approach of a Fresnel lens for creating uniform light-emitting diode light distribution patterns,” Fiber and Integrated Optics, vol. 33, no. 5-6, pp. 360-382, Dec. 2014.
    38. Rhinoceros: Modeling Tools for Designers (Rhino), version 5, Robert McNeel and Associates, Seattle, Washington, USA, http://www.en.na.mcneel.com.
    39. Advanced System Analysis Program (ASAP), Breault Research Organization, Inc., Tucson, Arizona, USA, http://www.breault.com.
    40. Cree, Inc. LED components. accessed Feb. 15, 2014, from http://www.cree.com.
    41. G. Yu, S. Ding, J. Jin, and T. Guo, “A free-form total internal reflection (TIR) lens for illumination,” Proc. SPIE, vol. 8321, art. 832110, 12 Dec. 2011.
    42. Z. Zheng, X. Hao, and X. Liu, “Freeform surface lens for LED uniform illumination,” Appl. Opt., vol. 48, no. 35, pp. 6627–6634, 10 Dec. 2009.
    43. ETAP Lighting. Lighting, http://www.etaplighting.com, accessed July 20, 2014..
    44. MR16 Definition and Concept [MR16的定(概念)], accessed Mar. 7, 2015, http://www.goodpex.cn/LED_Technology/LED_Basic_Knowledge&Glossary/346.html
    45. “North American LED Market Analysis [LED北美市场分析],” accessed Mar. 7, 2015, http://chuansong.me/n/749905.
    46. EMTEQ, Interior Lighting Product Guide, accessed Mar. 2, 2015, http://www.emteq.com/interior-light-guide.php.
    47. “LED New Opportunity: 2017 Civil Aircraft Production Lighting Market Will Reach $1.31 Billion,” http://www.ledinside.com.tw/news/20130322-25546.html, accessed Mar. 2, 2015,
    48. “2012-2017 Civil Aircraft Lighting Market Forecast and Analysis,” www.marketsandmarkets.com/Market-Reports/aircraft-cabin-lighting-market-953.html, accessed Mar. 7, 2015,
    49. SAE Standard ARP5873, LED Passenger Reading Light Assembly, accessed Mar. 2, 2015, http://standards.sae.org/wip/arp5873a.
    50. UTC Aerospace Systems, “Interiors - Lighting Systems,” accessed Mar. 2, 2015, http://utcaerospacesystems.com/Company/Pages/documents.aspx.
    51. Cree Components XLamp XP-C LEDs, accessed Mar. 2, 2015, www.cree.com.
    52. Avter, Inc. Report No. P20d001
    53. R. Wester, G. Müller, A. Völl, M. Berens, J. Stollenwerk, and P. Loosen, “Designing optical free-form surfaces for extended sources,” Opt. Express, vol. 22, no. S2, pp. A552-A560, 10 Mar. 2014.
    54. Zumtobel Lighting GmbH, The Lighting Handbook, Dornbirn, Austria.
    55. F. R. Fournier, W. J. Cassarly, and J. P. Rolland, “Fast freeform reflector generation using source-target maps,” Opt. Express, vol. 18, no. 5, pp. 5295–5304, 1 Mar. 2010.
    56. J. Jiang, S. To, W.B. Lee, and B. Cheung, “Optical design of a freeform TIR lens for LED streetlight,” Optik, vol. 121, pp. 1761-1765, Oct. 2010.
    57. G. Wang, L. Wang, L. Li, D. Wang, and Y. Zhang, “Secondary optical lens designed in the method of source target mapping,” Appl. Opt., vol. 50, no. 21, pp. 4031–4036, 7 May 2011.
    58. C. Canavesi, W. J. Cassarly, and J. P. Rolland, “Observations on the linear programming formulation of the single reflector design problem,” Opt. Express, vol. 20, no. 4, pp. 4050-4055, 13 Feb. 2012.
    59. K. C. Lin, “Designation of lenses with a single freeform surface for multiple point sources,” J. Opt. Soc. Am. A, vol. 29, no. 3, pp. 200-208, Mar. 2012.
    60. Z. Feng, L. Huang, M. Gong, and G. Jin, “Beam shaping system design using double freeform optical surfaces,” Opt. Express, vol. 21, no. 12, pp. 14728-14735, 17 June 2013.

    無法下載圖示 全文公開日期 2020/05/13 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE