簡易檢索 / 詳目顯示

研究生: 周宣
Shiuan Chou
論文名稱: 多層複合濾料水質淨化系統操作停滯時間對污染去除成效恢復之研究
A study on the recovery of pollution removal efficiency by operating dead time of Multi-Soil-Layering system
指導教授: 何嘉浚
Chia-Chun Ho
口試委員: 林逸彬
Yi-Pin Lin
陳起鳳
Chi-Feng Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 108
中文關鍵詞: 多層複合濾料水質淨化系統自然淨化系統停滯時間混合濾料層滲透濾層維護操作
外文關鍵詞: Multi-Soil-Layering system, Natural Treatment System, Dead Time, Permeable Layer, Soil Mixture Brick, Maintenance Operation
相關次數: 點閱:181下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

「多層複合濾料水質淨化系統 (Multi-Soil-Layering system, MSL)」為日本於1990年研發之現地水質淨化技術,臺灣於2015年引進MSL技術,並嘗試研究將材料及施作方法在地化,至今已成功應用於臺灣甚至外島地區。MSL是一種現地自然淨化系統 (On-site Natural Treatment System, NTS),各國目前廣泛應用於處理家庭生活污水及畜牧廢水等點源污染,亦可以使用於淨化河川、埤塘或水庫等。由於近年來國內有愈來愈多場址持續運行中,但MSL系統後續之穩定削減操作及維護仍不具體,本研究主要針對MSL系統暫停供水後的各項污染物削減成效來推斷後續的維護操作以及其恢復削減成效的時間,並透過更換系統內部材料來比較之間的差異性。本研究將比較傳統型MSL持續進水與間歇進水之差異,另外將滲透濾層 (Permeable Layer, PL)之細碎石更換成沸石、混合濾料層 (Soil Mixture Layer, SML) 之稻殼更換成木屑,並透過停滯進水觀察此系統之削減成效。經實驗結果得知,原MSL系統操作停滯7日以上會使系統削減不穩定,當中以依賴微生物菌分解之氨氮與硝酸鹽氮的影響最為明顯,整體需花5-7日恢復削減。系統更換成沸石的沸石型MSL間歇供水組(ZMSL-P, Zeolite MSL- Pause)能使磷酸鹽類、氨氮及硝酸鹽氮之削減更加穩定,減少至只需3-4日恢復削減,而系統更換成木屑的木屑型MSL間歇供水組(SMSL-P, Sawdust MSL- Pause)能使磷酸鹽類及硝酸鹽氮之削減更加穩定,但加劇影響氨氮與有機物之削減成效,需花6-8日恢復削減,故建議系統於污水入流不穩定之地區使用沸石型ZMSL來配置。若系統出現氨氮與有機物之削減成效下降,可能為微生物菌增生過量導致系統阻塞,則可操作停滯14日以上使微生物菌部分死亡剝落,嘗試恢復穩定削減成效。


"Multi-Soil-Layering system (MSL)" is an on-site water purification technology developed in Japan in 1990. Taiwan introduced MSL technology in 2015 and tried to study the materials and application methods locally. It has been successfully applied to Taiwan and even the outer islands. MSL is an On-site Natural Treatment System (NTS), which is widely used in various countries to treat point source pollution such as domestic sewage and livestock wastewater and can also be used to purify rivers, ponds, or reservoirs. As more and more sites are in continuous operation in China in recent years, the subsequent stable reduction operation and maintenance of the MSL system is still not specific. operations and the time it took to recover the cut effect and compare the differences by replacing the material inside the system. This study will compare the difference between continuous water inflow and intermittent water inflow of traditional MSL. In addition, the fine crushed stone in the permeable layer (PL) is replaced with zeolite, and the rice husk in the Soil Mixture Layer (SML) is replaced. Replace it with sawdust, and observe the reduction effect of this system through intermittent water feeding. According to the experimental results, if the operation of the original MSL system is stagnant for more than 7 days, the reduction of the system will be unstable. Among them, ammonia nitrogen and nitrate nitrogen matter that depend on the decomposition of microorganisms are the most obvious. It will take 5-7 days to restore the reduction. The zeolite MSL intermittent water supply group (ZMSL-P, Zeolite MSL-Pause) that replaced the system with zeolite can make the reduction of phosphate, ammonia nitrogen, and nitrate nitrogen more stable, and it only takes 3-4 days to restore the reduction, and the system Sawdust-type MSL intermittent water supply group (SMSL-P, Sawdust MSL-Pause) replaced by sawdust can make the reduction of phosphate and nitrate nitrogen more stable, but it will seriously affect the reduction effect of ammonia nitrogen and organic matter, and it will take 6-8 days To restore the reduction, it is recommended that the system be configured with zeolite ZMSL in areas where the sewage inflow is unstable. If the reduction effect of ammonia nitrogen and organic matter in the system declines, it may be due to the excessive proliferation of microbial bacteria, which may cause the system to block. The operation can be stagnant for more than 14 days to make part of the microbial bacteria die and peel off, and try to restore the stable reduction effect.

目錄 摘要 I ABSTRACT III 誌謝 V 目錄 VI 圖目錄 VIII 表目錄 XII 1 第一章 緒論 1 1.1 研究動機 1 1.2 研究範圍與方法 3 1.3 研究內容 4 1.4 研究流程 5 2 第二章 文獻回顧 6 2.1 MSL系統組成 6 2.2 水質淨化機制 9 2.3 MSL系統相關研究成果 13 3 第三章 研究方法與設備 25 3.1 研究方法 25 3.2 實驗設備與材料 26 3.3 水質標準採樣與檢測項目 31 3.4 實驗槽體組裝 34 3.5 實驗步驟 37 4 第四章 實驗結果分析 38 4.1 停滯傳統型TMSL系統削減成效實驗 38 4.1.1 總磷、正磷酸鹽 39 4.1.2 氨氮、硝酸鹽氮 43 4.1.3 化學需氧量 47 4.1.4 停滯傳統型TMSL系統供水污染物削減實驗結果 50 4.2 停滯木屑型SMSL-P系統削減成效實驗 51 4.2.1 總磷、正磷酸鹽 52 4.2.2 氨氮、硝酸鹽氮 57 4.2.3 化學需氧量 64 4.2.4 停滯木屑型SMSL-P系統削減成效實驗結果比對 67 4.3 停滯沸石型ZMSL-P系統削減成效實驗 68 4.3.1 總磷、正磷酸鹽 69 4.3.2 氨氮、硝酸鹽氮 75 4.3.3 化學需氧量 81 4.3.4 停滯沸石型ZMSL-P系統削減成效實驗結果比對 83 4.4 綜合比較P值 84 5 第五章 結論與建議 86 5.1 結論 86 5.2 建議 87 6 參考文獻 88

1. 王培濠. (2014). 環保濾材應用於呈層複合土壤水質淨化系統之研究。國立臺北科技大學土木與防災研究所碩士論文,台北市。
2. 何嘉浚(2012)。地工合成材料於多層複合濾料過濾系統之應用。行政院國家科學委員會100年度精簡報告。
3. 李翰林(2021)。多層複合濾料水質淨化系統施工規範研擬之研究。國立臺灣科技大學營建工程系碩士論文,台北市。
4. 林孟儒(2014)。地工不織布應用於呈層複合土壤水質淨化系統最適性之研究。國立臺北科技大學土木與防災研究所碩士論文,台北市。
5. 林鎮洋(2007)。非點源污染削減技術試驗計畫。行政院環境保護署期末成果報告。
6. 陳俊瑋(2016)。呈層複合土壤水質淨化系統長期穩定性研究。國立臺北科技大學土木工程系土木與防災碩士班碩士論文,台北市。
7. 陳妍樺(2019)。環保署前瞻計畫多層複合濾料(MSL)工程改善水質實務案例及現地參訪會議。研討會報告https://wwwwec.ntut.edu.tw/var/file/95/1095/img/550598146.pdf,高雄市。
8. Attanandana, T., Saithiti, B., Thongpae, S., Kritapirom, S., & Wakatsuki, T. (1997). Wastewater treatment study using the Multi-Soil-Layering system. Soil Quality Management and Agro-Ecosystem Health, 417-426.
9. Khalifa, J., Ouazzani, N., Hejjaj, A., & Mandi, L. (2020). Remediation and disinfection capabilities assessment of some local materials to be applied in multi-soil-layering (MSL) ecotechnology. Desalination and Water Treatment, 178, 53-64.
10. Luanmanee, S., Attanandana, T., Masunaga, T., & Wakatsuki, T. (2001). The efficiency of a multi-soil-layering system on domestic wastewater treatment during the ninth and tenth years of operation. Ecological Engineering, 18(2), 185-199.
11. Masunaga, T., Sato, K., Zennami, T., Fujii, S., & Wakatsuki, T. (2003). Direct treatment of polluted river water by the multi-soil-layering method. Journal of Water and Environment Technology, 1(1), 97-104.
12. Song, P., Huang, G., An, C., Xin, X., Zhang, P., Chen, X., ... & Yang, X. (2021). Exploring the decentralized treatment of sulfamethoxazole-contained poultry wastewater through vertical-flow multi-soil-layering systems in rural communities. Water Research, 188, 116480.
13. Song, P., Huang, G., Hong, Y., An, C., Xin, X., & Zhang, P. (2020). A biophysiological perspective on enhanced nitrate removal from decentralized domestic sewage using gravitational-flow multi-soil-layering systems. Chemosphere, 240, 124868.
14. Tang, W., Li, X., Liu, H., Wu, S., Zhou, Q., Du, C., ... & Yang, C. (2020). Sequential vertical flow trickling filter and horizontal flow multi-soil-layering reactor for treatment of decentralized domestic wastewater with sodium dodecyl benzene sulfonate. Bioresource technology, 300, 122634.
15. Tahir, Y. (1997). Enhancement and control of the functions of soil resources for biogenic wastewater treatment by multi soil layering method. In Proceedings of the 4th International Conference of ESAFs on Soils Quality Management and Agro-Ecosystem Health, 1997.
16. Wakatsuki, T., Esumi, H., & Omura, S. (1993). High performance and N & P-removable on-site domestic waste water treatment system by multi-soil-layering method. Water Science and Technology, 27(1), 31-40.

QR CODE