簡易檢索 / 詳目顯示

研究生: 李偉傑
WEI-JIE LI
論文名稱: 數位控制LLC諧振轉換器之研製
Design and Implement of a Digitally Controlled LLC Resonant Converter
指導教授: 劉益華
Yi-Hua Liu
口試委員: 呂榮基
none
王順忠
none
黃仲欽
Jonq-Chin Hwang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 94
中文關鍵詞: LLC諧振轉換器盲時區間數位控制零電壓切換
外文關鍵詞: digital control, zero voltage switching, LLC resonant converter, dead time
相關次數: 點閱:316下載:21
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 諧振轉換器因為擁有降低切換損失及高頻操作的特性,所以能夠利用諧振電流近似正弦波及零電壓切換來穩定輸出,同時能大幅降低切換損失並且減少雜訊。在眾多諧振轉換器中,LLC諧振轉換器除了具備在寬負載範圍能穩壓輸出外,也可在小頻寬範圍內做負載變動,以及操作的頻率範圍均能達ZVS的優點。
    本文主要為研製一個500 W輸出之數位控制LLC諧振轉換器。開關控制信號使用Microchip開發的低成本數位處理器dsPIC33FJ16GS502來實現。文中首先針對所使用之系統的硬體與軟體進行深入地探討,並且提出系統設計上的考量。接著對系統損耗進行分析,並研究盲時區間對效率之影響。根據實驗結果,本文所提出之數位控制LLC諧振轉換器之效率,在所有負載條件下均可以達到90%以上。


    Resonant converters can reduce switching losses and allow for high-frequency operation, these techniques process power in a sinusoidal manner and achieves zero voltage switching (ZVS). Therefore, the switching losses and noises can be dramatically reduced. Among resonant converters, LLC resonant converter has advantages such as regulating the output voltage over wide line and load variations with a relatively small variation of switching frequency, and achieving ZVS over the entire operating range.
    In this thesis, a 500 W digitally-controlled LLC resonant converter is implemented and studied. The gating signals of the power switches are generated using a low cost digital signal controller dsPIC33FJ16GS502 from Microchip corp. Detailed description about the hardware and firmware parts of the system will be presented first and the design considerations will be discussed. Next, the losses analysis will be performed, and the effect of the dead time values on the converter efficiency will also be investigated. According to the experimental results, the proposed digitally-controlled LLC resonant converter can achieve efficiencies higher than 90 % under all load conditions.

    摘要 Abstract 誌謝 目錄 圖目錄 表目錄 第一章 緒論 1.1 研究背景與動機 1.2 數位電源之特色 1.3 文獻探討 1.4 論文大綱 第二章 LLC諧振轉換器動作分析 2.1 理想RLC串聯諧振電路分析 2.2 半橋式串聯諧振轉換器簡介 2.3 LLC串聯諧振轉換器頻率響應分析 2.4 LLC串聯諧振轉換操作模式分析 2.4.1 Region-1 之電路操作模式分析 2.4.2 Region-2 之電路操作模式分析 第三章 損耗分析 3.1 功率開關之切換損失 3.2 電路元件之導通損失 3.3 變壓器之損失 3.4 盲時區間對導通損之影響 3.5 盲時區間對切換損之影響 第四章 硬體電路規格制定與設計 4.1 硬體電路規格制定 4.2 硬體元件設計及佈局(Layout)考量 4.3 電路元件參數之設計與選用 第五章 數位控制器設計 5.1 前言 5.2 dsPIC33F16GS502簡介 5.3 程式設計流程介紹 5.4 數位濾波器 5.4.1 濾波器簡介 5.4.2 有限脈衝響應濾波器設計 5.5 數位PID 5.5.1 PID介紹 5.5.2 數位PID控制器 第六章 實驗結果與討論 6.1 實驗測試儀器及設備 6.2 實驗波形量測 6.3 實體電路圖 第七章 結論與未來展望 7.1 結論 7.2 未來展望 參考文獻

    [1] K. H. Liu, and F. C. Y. Lee, “Zero-Voltage Switching Technique in DC/DC Converters,” IEEE Transactions on Power Electronics, vol. 5, pp. 293-304, Jul. 1990.
    [2] J. Feng, Y. Hu, Wei Chen, and Chau-Chun Wen, “ZVS Analysis of Asymmetrical Half-Bridge Converter,” IEEE Proc. Power Electronics Specialist Conference, vol. 1, pp. 243-247, 2001.
    [3] 邱奕勳,「電池充電用數位控制LLC諧振轉換器設計與硏製」,國立台灣科技大學電機工程系碩士學位論文,2012年。
    [4] 劉俊佑,「數位控制同步整流式LLC諧振轉換器之設計與研製」,國立台灣科技大學電機工程系碩士學位論文,2014年。
    [5] C. W. Tsang, M. P. Foster, D. A. Stone, and D. T. Gladwin, “Analysis and Design of LLC Resonant Converters With Capacitor–Diode Clamp Current Limiting,” IEEE Transactions on Power Electronics, vol. 30, no. 3, pp. 1345-1355, Mar. 2015
    [6] I. O. Lee, and G. W. Moon, “Analysis and Design of a Three-Level LLC Series Resonant Converter for High- and Wide-Input-Voltage Applications,” IEEE Transactions on Power Electronics, vol. 27, no. 6, pp. 2966-2979, Jun. 2012
    [7] H. D. Groot, E. Janssen, R. Pagano, and K. Schetters, “Design of a 1-MHz LLC Resonant Converter Based on a DSP-Driven SOI Half-Bridge Power MOS Module,” IEEE Transactions on Power Electronics, vol. 22, no. 6, pp. 2307-2320, Nov. 2007
    [8] C. M. Lai, and K. K. Shyu, “A Single-Stage AC/DC Converter Based on Zero Voltage Switching LLC Resonant Topology,” IET Electric Power Applications, vol. 1, pp. 743-752, Sept. 2007
    [9] T. Jiang, J. Zhang, X. Wu, K. Sheng, and Y. Wang, “A Bidirectional LLC Resonant Converter with Automatic Forward and Backward Mode Transition,” IEEE Transactions on Power Electronics, vol. 30, no. 2, pp. 757-770, Feb. 2015
    [10] R. Beiranvand, M. R. Zolghadri, B. Rashidian, and S. M. H. Alavi, “Optimizing the LLC–LC Resonant Converter Topology for Wide-Output-Voltage and Wide-Output-Load Applications,” IEEE Transactions on Power Electronics, vol. 26, no. 11, pp. 3192-3204, Nov. 2011
    [11] B. C. Kim, K. B. Park, and G. W. Moon, “Asymmetric PWM Control Scheme During Hold-Up Time for LLC Resonant Converter,” IEEE Transactions on Industrial Electronics, vol. 59, no. 7, pp. 2992-2997, Jul. 2012
    [12] H. Nguyen, R. Zane, and D. Maksimovic, “ON/OFF Control of a Modular DC–DC Converter Based on Active-ClampLLC Modules,” IEEE Transactions on Power Electronics, vol. 30, no. 7, Jul. 2015
    [13] H. Pan, C. He, F. Ajmal, H. Chen, and G. Chen, “Pulse-Width Modulation Control Strategy for High Efficiency LLC Resonant Converter with Light Load Applications,” IET Power Electronics, vol. 7, pp. 2887–2894, 2014
    [14] R. Beiranvand, B. Rashidian, M. R. Zolghadri, and S. M. H. Alavi, “Designing an Adjustable Wide Range Regulated Current Source,” IEEE Transactions on Power Electronics, vol. 25, no. 1, pp. 197-208, Jan. 2010
    [15] R. Beiranvand, B. Rashidian, M. R. Zolghadri, and S. M. H. Alavi, “Using LLC Resonant Converter for Designing Wide-Range Voltage Source,” IEEE Transactions on Industrial Electronics, vol. 58, no. 5, pp. 1746-1756, May 2011
    [16] R. Beiranvand, B. Rashidian, M. R. Zolghadri, and S. M. H. Alavi, “Optimizing the Normalized Dead-Time and Maximum Switching Frequency of a Wide-Adjustable-Range LLC Resonant Converter,” IEEE Transactions on Power Electronics, vol. 26, no. 2, pp. 462-472, Feb. 2011
    [17] C. C. Wang, Y. C. Chang, Y. K. Lo, and H. J. Chiu, “Efficiency Improvement in Adjustable Deadtime of LLC Resonant Converters,” 2014 International Conference on Intelligent Green Building and Smart Grid, pp. 1-4, Apr. 2014
    [18] N. Mohan, T. M. Undeland, and W. P. Robbins, Power Electronics: Converters, Applications, and Design, 3rd Edition. New York: John Wiley & Sons, 2003, pp. 249-297
    [19] R. L. Steigerwald, “A comparison of half-bridge resonant converter topologies,” IEEE Transactions on Industrial Electronics, vol. 31, no. 2, pp. 181-191, May 1984.
    [20] B. Lu, W. Liu, Y. Liang, F. C. Lee, and J. D. Van Wyk, “Optimal design methodology for LLC resonant converter,” IEEE Proc. Applied Power Electronics Conference and Exposition, pp.533-538, 2006.
    [21] J. F. Lazar, and R. Martinelli, “Steady-state analysis of the LLC series resonant converter,” IEEE Proc. Applied Power Electronics Conference and Exposition, vol. 2, pp. 728-735, 2001.
    [22] ST Microelectronics, “LLC resonant half-bridge converter design guideline,” Application Note, AN2450, Oct. 2007.
    [23] ST Microelectronics, “High voltage resonant controller,” Data sheet, L6599, Jul. 2006.
    [24] J. H. Jung, and J. G. Kwon, “Theoretical analysis and optimal design of LLC resonant converter,” IEEE Proc. Applied Power Electronics Conference and Exposition, pp.1-10, 2007.
    [25] M. K. Kazimierczuk, and D. Czarkowski, Resonant power converters, John Wiley & Sons, Inc., 1995.
    [26] 曾偉碩,「空載低損耗不對稱半橋電源轉換器之研究」,國立成功大學電機工程學系碩士論文,2003年。
    [27] 王信雄,「切換式電源的磁性元件:原理、設計與應用」,國立清華大學先進電源科技中心訓練課程,2004年。
    [28] Y. Ye, C. Yan, J. Zeng, and J. Ying, “A novel light load solution for LLC series resonant converter,” IEEE INTELEC, pp.61-65, 2007.
    [29] 陳雅君,「LLC諧振轉換器之設計與研製」,國立成功大學電機工程學系碩士論文,2009年。
    [30] Ya Liu, “High Efficiency Optimization of LLC Resonant Converter for Wide Load Range,” Master of Science in Electrical Engineering, Blacksburg, Virginia, 2007
    [31] Microchip Technology Inc.,” dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04,”Available: http://www.microchip.com.
    [32] 曾百由,「數位訊號控制器原理與應用」,宏友圖書開發股份有限公司,民國96年11月。
    [33] “Implementing FIR and IIR Digital Filters Using PIC18 Microcontrollers,” Application Note AN852.
    [34] Filter Design for dsPIC™ DSC Digital Filter Design and Analysis System, Momentum Data Systems, Inc., 2008.
    [35] 趙清風,「控制工程初階-使用MATLAB Simulink」,全華科技圖書,民國90年12月。
    [36] 劉金琨,「先進PID控制MATLAB仿真」第二版,電子工業出版社,2004年。

    無法下載圖示 全文公開日期 2020/07/31 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE