簡易檢索 / 詳目顯示

研究生: 黃治集
Chih-Chi Huang
論文名稱: 目標設定與計畫在探究實驗中對偏鄉地區高中生學習之影響
Exploring the influence of goal setting and planning on students' inquiry learning
指導教授: 陳素芬
Sufen Chen
口試委員: 陳秀玲
Hsiu-Ling Chen
王嘉瑜
Chia-Yu Wang
學位類別: 碩士
Master
系所名稱: 人文社會學院 - 數位學習與教育研究所
Graduate Institute of Digital Learning and Education
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 50
中文關鍵詞: 對科學的態度自我調整學習數位量測實驗
外文關鍵詞: Self-Regulated Learning, Microcomputer-Based Laboratory, Attitudes toward science
相關次數: 點閱:589下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究旨在探討以實驗的目標設定與計畫對高中生「探究表現」、「學習成就」及「對科學的態度」的影響。採用實驗研究法,以新北市偏鄉地區71名高級中學學生為樣本,透過數位測量儀器(MBL)結合自我調整學習(SRL)的循環,進行科學探究實驗。實驗組有35人,學習單有引導作目標設定與計畫;控制組為36人,學習單無目標設定與計畫。資料來源主要透過「波以耳學習單」、「波以耳定律成就測驗」以及「對科學的態度量表」,來瞭解整體學生以及男女生之間,在教學前後對其學習成就及態度是否有所改變。分析的結果有以下結論:實驗組中大部分的學生在選擇器材及決定取數據量的問題上,較缺乏思考實質科學上的意義,可能需要有更多的鷹架輔助。科學探究表現的結果顯示,無論有沒有目標設定和計畫,學生在後來的探究活動中的表現皆無明顯差異。所有學生在學習成就前後測的成績,均有顯著的進步。加入性別後,四組之間的比較,實驗組的男生顯著優於實驗組的女生,其他組之間則無顯著差異。在前測「對科學的態度」,四組沒有顯著,而後測的態度,男生顯著比女生高。進行事後比較的結果,實驗組的男生顯著高於實驗組和控制組的女生。女生在態度量表中的「對科學的享受與自我概念」分量表與態度問卷總分,實驗後顯著退步。綜上所述,推論男生在目標設定和計畫的探究活動中較正向,而女生相對較負向。目標設定和計畫的探究活動對男生是有所幫助的,然而,從態度分數及測驗分數的結果,對女生卻可能造成過多的認知負荷。因此推測,在探究性活動中,或許男生較女生更適合目標設定與計劃的引導。本研究認為以科學探究的方式,引導學生進行科學學習,結合MBL的設計及SRL的循環,可以提升低成就學生的科學學習,對男學生的效果尤其顯著。


This study aimed to explore the influence of experimental goal setting and planning on students’ inquiry learning by combining a microcomputer-based laboratory (MBL) and self-regulated learning (SRL). A 2 (male and female) x 2 (experiment group and control group) factorial design was adopted and the data were collected from 71 low achievement senior high school students at a remote public high school in New Taipei City. There were 35 students for the experiment group and 36 students for the control group. Data included the Boyle’s learning sheet, the Boyle’s Law Performance Test, and Attitudes toward Science Scale. The results were concluded as follows: Most of the students in the experiment group lacked the ability to plan for the experiment materials and the amount of data they should collect. All students had significant progress from pre- to post- Boyle’s Law Performance Test. Furthermore, the performance of the male students in the experiment group on post-test was greater than that of female students in the control group. For the attitudes toward science, male students’ scores on the post-test were higher than those of female students. Moreover, female students’ enjoyment toward science and attitudes toward science had significantly decreased. As a result, it is suggested that male students were more positive with goal setting and planning in the inquiry activity, whereas female were more negative. Thus, it is inferred that the activity brings excessive cognitive load for female students. The influence of learning styles on their performance needs further investigation. This study suggests that the inquiry learning combined with the MBL and the SRL cycle can promote the performance of the low achievers in science, especially for male students.

中文摘要...........................................................Ⅰ Abstract............................................................Ⅱ 誌 謝.............................................................Ⅲ 目 錄.............................................................Ⅳ 圖目錄.............................................................Ⅵ 表目錄.............................................................Ⅶ 第一章 緒論........................................................1 第一節 研究背景與動機..........................................1 第二節 研究問題................................................4 第三節 研究假設................................................4 第四節 研究限制................................................5 第五節 相關名詞定義............................................5 第二章 文獻探討....................................................6 第一節 數位量測實驗............................................6 第二節 自我調整學習...........................................12 第三章 研究方法...................................................23 第一節 研究架構與流程.........................................23 第二節 研究對象...............................................27 第三節 研究工具...............................................28 第四節 資料蒐集與處理分析.....................................30 第四章 研究結果與分析.............................................34 第一節 對科學探究表現的影響...................................36 第二節 對學習成就的影響.......................................37 第三節 對科學態度的影響.......................................39 第四節 科學探究實驗中,影響科學概念及態度的因素................40 第五章 結論與建議.................................................42 第一節 結論...................................................42 第二節 未來研究建議...........................................43 參考文獻...........................................................46 中文部分.......................................................46 英文部分.......................................................47

一、中文部分
王金國(2001)。成功學習之關鍵~自我調整學習。課程與教學,5(1),145-164。
巫博瀚(2005)。以結構方程模式檢驗自我調整學習對國中生學習成就之影響。國立台灣科技大學技術與職業教育研究所之碩士論文,未出版,台北。
杜雨潔、蔡翰征(2011)。男生、女生腦袋大不同?–以TASA 資料為例。「臺灣學生學習成就評量資料庫」電子報,17。上網日期:2011年01月15日,檢自臺灣學生學習成就評量資料庫。
林清山、程炳林(1995)。國中生自我調整學習因素與學習表現之關係暨自我調整的閱讀理解教學策略效果之研究。國立台灣師範大學教育心理與輔導學系教育心理學報,28,15-58。
程炳林(2002)。大學生學習工作、動機問題與自我調整學習策略之關係。教育心理學報,33(2),79-102。
教育部(2012)。教育施政理念與政策。台北:教育部。
教育部(2012)。十二年國民基本教育實施計畫。台北:教育部。
郭重吉(2007)。科學教師之路-由實習輔導到專業成長。心理出版社,台北市。
蔡翰征(2011)。學生家庭社經地位背景與自然科學習成就表現之關聯性探討。「臺灣學生學習成就評量資料庫」電子報,31。上網日期:2011年11月15日,檢自臺灣學生學習成就評量資料庫。
謝抒欣(2012)。偏遠學校教師信念與教學實踐之個案研究。國立臺北教育大學碩士論文,未出版,台北市。
蘇暐珍(2009)。線上模擬實驗對高中生對科學的態度之影響。國立台灣科技大學技術與職業教育研究所之碩士論文,未出版,台北。

二、英文部分
Aksela, M. K. (2011). Engaging students for meaningful chemistry learning through microcomputer-based laboratory (MBL) inquiry. Educació Química EduQ, 9, 30-37. doi: 10.2436/20.2003.02.66
Arsal, Z. (2010). The effects of diaries on self-regulation strategies of preservice science teachers. International Journal of Environmental & Science Education, 5(1), 85-103.
Bandura, A. (1986). Social foundations of thought and action: A social cognitive theory. Englewood Cliffs, NJ: Prentice Hall.
Bandura, A. (1991). Social cognitive theory of self-regulation. Organizational Behavior and Human Decision Processes, 50 (2), 248-287.
Bandura, A. (1997). Self-efficacy: The exercise of control. New York, NY: W. H. Freeman and Company.
Barzegar, M. (2012). The relationship between goal orientation and academic achievement- The mediation role of self regulated learning strategies- A path analysis. Paper presented at the International Conference on Management, Humanity and Economics, Thailand.
Bembenutty, H. (2007). Self-regulation of learning and academic delay of gratification gender and ethnic differences among college students. Journal of Advanced Academics, 18, 586-616.
Boekaerts, M., & Cascallar, E. (2006). How far have we moved toward the integration of theory and practice in self-regulation? Educational Psychology Review, 18, 199-210.
Boujaoude, S. B., & Jurdak, M. E. (2010). Integrating physics and math through microcomputer-based laboratories (MBL) effects on discourse type, quality, and mathematization. International Journal of Science and Mathematics Education, 8, 1019-1047.
Chen, Chang, Lai, & Tsai (in press). Comparison of students’ approaches to inquiry, conceptual learning and attitudes in simulation-based and microcomputer-based laboratories. Science Education.
DiBenedetto, M. K., & Bembenutty, H. (2011). Within the pipeline self-regulated learning and academic achievement among college students in science courses. American Educational Research Association.
Eijck, M. v., Goedhart, M., & Ellermeijer, T. (2005). Logging the heart with microcomputer-based labs. Journal of Biological Education, 39(4), 171-173
Espinoza, F. (2002). Developing inquiry through activities that integrate fieldwork and microcomputer-based technology. Science Activities, 39(3), 9-17.
Espinoza, F. (2007). The use of graphical analysis with microcomputer-based laboratories to implement inquiry as the primary mode of learning science.
Journal of Educational Technology Systems, 35(3), 315-335.
Espinoza, F., & Quarless, D. (2009). An inquiry-based contextual approach as the primary mode of learning science with microcomputer-based laboratory technology. Journal of Educational Technology Systems, 38(4), 407-426. doi: 10.2190/ET.38.4.c
Greene, J. A., & Azevedo, R. (2007). A theoretical review of Winne and Hadwin's model of self-regulated learning: New Perspectives and Directions. Review of Educational Research, 77(3), 334-372. doi: 10.3102/003465430303953
Gunhaart, A., & Srisawasdi, N. (2012). Effect of integrated computer-based laboratory environment on students’ physics conceptual learning of sound wave properties. Procedia - Social and Behavioral Sciences, 46, 5750-5755. doi: 10.1016/j.sbspro.2012.06.510
Koksal, M. S., & Yaman, S. (2012). An investigation of the epistemological predictors of self-regulated learning of advanced science students. Science Educator, 21(2).
Lee, H. W., Lim, K. Y., & Grabowski, B. L. (2010). Improving self-regulation, learning strategy use, and achievement with metacognitive feedback. Educational Technology Research and Development, 58(6), 629-648. doi: 10.1007/s11423-010-9153-6
Moliterni, P., Stasio, S. D., Carboni, M., & Chiacchio, C. D. (2010). Motivational and self regulated learning components of academic performance. Paper presented at the 39th EUCEN Conference, University of Lapland, Rovaniemi, Finland.
Neber, H., He, J., Liu, B. X., & Schofield, N. (2008). Chinese high-school students in physics classroom as active, self-regulated learners cognitive, motivational and environmental aspects. International Journal of Science and Mathematics Education, 6, 769-788.
Nicolaou, C. T., Nicolaidou, I. A., Zacharia, Z. C., & Constantinou, C. P. (2007). Enhancing fourth graders’ ability to interpret graphical representations through
the use of microcomputer-based labs implemented within an inquiry-based activity sequence. Journal of Computers in Mathematics and Science Teaching, 26(1), 75-99.
Onemli, M., & Yondem, Z. D. (2012). The effect of psychoeducational group training depending on self regulation on students’ motivational strategies and
academic achievement. Educational Sciences: Theory & Practice, 12(1), 67-73.
Pierri, E., Karatrantou, A., & Panagiotakopoulos, C. (2008). Exploring the phenomenon of 'change of phase' of pure substances using the microcomputer-based-laboratory (MBL) system. Chemistry Education Research and Practice, 9(3), 234. doi: 10.1039/b812412b
Pintrich, P.R. (2000). The role of goal-orientation in SRL. In M. Boekaerts, P. R.
Pintrich, & M. Zeidner (Eds), Handbook of self-regulation (pp. 451–502). San Diego, CA : Academic Press.
Pintrich, P. R. (2004). A conceptual framework for assessing motivation and self-regulated learning in college students. Educational Psychology Review, 16(4), 385-407.
Quarless, D., & Espinoza, F. (2009). An inquiry-based contextual approach as the primary mode of learning science with microcomputer-based laboratory technology. Journal of Educational Technology Systems, 38(4), 407-426. doi
: 10.2190/ET.38.4.c
Russell, D. W., Lucas, K. B., & McRobbie, C. J. (2004). Role of the microcomputer-based Laboratory display in supporting the construction of new understandings in thermal physics. Journal of Research in Science Teaching,
41(2), 165-185. doi: 10.1002/tea.10129
Slykhuis, D., & Park, J. (2006). Correlates of achievement with online and classroom-based MBL physics activities. Journal of Computers in Mathematics and Science Teaching, 25(2), 147-163.
Srisawasdi, N. (2012). Student teachers’ perceptions of computerized laboratory practice for science teaching: A comparative analysis. Procedia - Social and Behavioral Sciences, 46, 4031-4038. doi: 10.1016/j.sbspro.2012.06.192
Tang, M., & Neber, H. (2008). Motivation and self‐regulated science learning in high‐achieving students: differences related to nation, gender, and grade‐level. High Ability Studies, 19(2), 103-116. doi: 10.1080/13598130802503959
Velayutham, S., Aldridge, J., & Fraser, B. (2011). Development and validation of an instrument to measure students’ motivation and self‐regulation in science
learning. International Journal of Science Education, 33(15), 2159-2179. doi: 10.1080/09500693.2010.541529
Velayutham, S., Aldridge, J. M., & Fraser, B. (2012). Gender differences in student motivation and self-regulation in science learning: A multi-group structural equation modeling analysis. International Journal of Science and Mathematics
Education, 10(6), 1347-1368. doi: 10.1007/s10763-012-9339-y
Winne, P. H., & Hadwin, A. F. (1998). Studying as self-regulated learning. In D. J.Hacker, J. Dunlosky, & A. Graesser (Eds.), Metacognition in educational theory and practice (pp. 277–304). Hillsdale, NJ: Lawrence Erlbaum.
Zimmerman, B. J. (1989). A social cognitive view of self-regulated academic achievement: An overview. Journal of Educational Psychology, 81, 329-339.
Zimmerman, B. J. (1998a). Academic studying and the development of personal skill: A self-regulatory perspective. Educational Psychologist, 33, 73-86.
Zimmerman, B. J. (2000). Attaining self-regulation: A social cognitiveperspective. In M. Boekaerts, P. R. Pintrich, & M. Zeidner (Eds.), Handbook of Self-regulation. (pp. 20-41), San Diego, CA: Academic press.
Zimmerman, B. J. (2002). Becoming a self-regulated learner: An overview. Theory into Practice, 41(2), 64-70.
Zimmerman, B. J. (2008). Investigating self-regulation and motivation: Historical background, methodological developments, and future prospects. American Educational Research Journal, 45, 166-183.

QR CODE