簡易檢索 / 詳目顯示

研究生: 吳建融
Chien-jung Wu
論文名稱: 矩陣轉換器驅動交流電動機的控速系統之研製
Design and Implementation of AC Motor Speed Control Systems Driven by a Matrix Converter
指導教授: 劉添華
Tian-Hua Liu
口試委員: 廖聰明
Chang-Ming Liaw
許源浴
Yuan-Yih Hsu
葉勝年
Sheng-Nian Yeh
林法正
Faa-Jeng Lin
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 124
中文關鍵詞: 矩陣轉換器永磁同步電動機感應電動機數位信號處理器高複雜度可程式化邏輯元件
外文關鍵詞: permanent magnet synchronous motor, induction motor, digital signal processor, complex programmable logic device, matrix converter
相關次數: 點閱:695下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文旨在研製矩陣轉換器驅動交流電動機控速系統。文中首先說明永磁同步電動機和感應電動機的結構、特性及數學模式,其次提出新型的矩陣轉換器切換策略,以期減小矩陣轉換器切換時所產生的電流漣波,進而改善以矩陣轉換器驅動電動機之低速下的性能。最後,以一個16位元數位信號處理器TMS320LF2407A和一個高複雜度可程式化邏輯元件XC95288XL達成所有的電流及速度控制,使得硬體電路大為簡化,完成了全數位化控制系統。相關的分析並以實測加以驗證,實測結果說明本文所提出的相關法則確實可行,且具有良好的暫態、加載性能及寬廣控速範圍。


    This thesis proposes the design and implementation of AC motor speed control systems driven by a matrix converter. First, the structure, characteristics and mathematical model of the permanent magnet synchronous motor and induction motor are discussed. In order to reduce the current ripple generated by the matrix converter, a novel switching strategy has been proposed. As a result, the performance of the drive system at low speed has been improved. All the control loops, including current loop and speed loop are implemented by a 16-bit TMS320LF2407A digital signal processor and a complex programmable logic device XC95288XL. Thus, the hardware circuit is very simple. A fully digital control system is achieved. The theoretical analysis can be validated by experimental results, which show that the proposed method is feasible and the drive system has good transient and load disturbance responses, and a wide adjustable speed range.

    中文摘要 I 英文摘要 II 目錄 III 圖目錄 VI 表目錄 X 符號說明 XI 第一章 緒論 1 1.1 動機 1 1.2 文獻回顧 4 1.3 研究目的 6 1.4 大綱 8 第二章 永磁同步電動機 9 2.1 簡介 9 2.2 結構及特性 9 2.3 數學模式 11 2.4 控制方法 13 第三章 感應電動機 16 3.1 簡介 16 3.2 結構及特性 16 3.3 數學模式 18 3.4 控制方法 20 第四章 矩陣轉換器 22 4.1 簡介 22 4.2 電路架構 24 4.2.1 主電路 24 4.2.2 換相電路 25 4.3 切換原理 29 4.3.1 直接轉換型 32 4.3.2 間接轉換型 35 第五章 新型切換策略 39 5.1 簡介 39 5.2 電流調制之新型切換策略 39 5.3 輸入電壓選擇方法 46 第六章 系統設計及製作 49 6.1 簡介 49 6.2 硬體電路設計 50 6.2.1 主電路 50 6.2.2 驅動級電路 53 6.2.3 緩衝級電路 55 6.2.4 電源電路 55 6.2.5 感測電路 57 6.2.6 數位信號處理器 59 6.2.7 高複雜度可程式化邏輯元件 60 6.3 軟體程式設計 62 6.3.1 主程式 63 6.3.2 中斷服務程式 64 6.3.3 CPLD程式設計 65 6.4 停電復歸對策 66 6.4.1 硬體結構 66 6.4.2 實現流程 67 第七章 實測結果 68 7.1 簡介 68 7.2 實測結果 70 7.2.1 電流調制實測波形 70 7.2.2 永磁同步電動機驅動系統實測 85 7.2.3 感應電動機驅動系統實測 97 7.2.4 停電復歸相關實測 109 7.2.5 實際硬體照片 112 第八章 結論與建議 116 參考文獻 117 作者簡介 124

    [1] B. K. Bose, “Power electronics and motion control-technology status and recent trends,” IEEE Transactions on Industry Applications, vol. 29, no. 5, September/October 1993, pp. 902-909.
    [2] T. M. Jahns, “Motion control with permanent magnet AC machines,” Proceedings of the IEEE, vol. 82, no. 8, August 1994, pp. 1241-1252.
    [3] P. C. Sen, “Electric motor drives and control-past, present, and future,” IEEE Transactions on Industrial Electronics, vol. 37, no. 6, December 1990, pp. 562-575.
    [4] T. A. Lipo, “Resent progress in the development of solid-state AC motor drives,” IEEE Transactions Power Electronics, vol. 3, no. 2, April 1988, pp. 105-117.
    [5] P. Vas, Vector control of AC machines, New York: Clarendon Press, 1990.
    [6] B. K. Bose, Power electronics and variable frequency drives- technology and applications, New York: IEEE Press, 1997.
    [7] M.Venturini and A. Alesina, “The generalized transformer: a new bidirectional, sinusoidal waveform frequency converter with continuously adjustable input power factor,” IEEE PESC’80, 1980, pp.242-252.
    [8] C. Klumpner and F. Blaabjerg, “Experimental evaluation of ride- through capabilities for a matrix converter under short power interruptions,” IEEE Transactions on Industrial Electronics, vol. 49, no. 2, April 2002, pp. 315–324.
    [9] M. Yang, S. Kai, Z. Daning, H. Lipei, and K. Matsuse “Application of matrix converter in auxiliary drive system for diesel locomotives,” IEEE IAS’05, October 2005, pp. 2476–2483.
    [10] L. Huber and D. Borojevic, “Space vector modulated three-phase to three-phase matrix converter with input power factor correction,” IEEE Transactions on Industry Applications, vol. 31, no. 6, November/ December 1995, pp. 1234-1245.
    [11] D. Casadei, G. Serra, and A. Tani, “The use of matrix converter in direct torque control of induction machines,” IEEE IECON'98, 1998, pp. 744-749.
    [12] P. W. Wheeler, J. Rodriguez, J. C. Clare, and L. Empringham, “Matrix converter: A technology review,” IEEE Transactions on Industrial Electronics, vol. 49, no. 2, April 2002, pp. 276-288.
    [13] N. Burany, “Safe control of four-quadrant switches,” IEEE IAS’89, October 1989, pp. 1190-1194.
    [14] M. J. Bland, P. M. Wheeler, J. C. Clare, and L. Empringham, “Comparison of bi-directional switch components for direct AC-AC converters,” IEEE PESC’04, 2004, vol. 4, pp. 2950-2909.
    [15] L. Gyugyi and B. R. Pelly, Static power frequency chargers : theory, performance, and application, New York : Wiley, 1976.
    [16] A. Alesina and M. Venturini, “Solid state power conversion: a Fourier analysis approach to generalized transformer synthesis,” IEEE Transactions on Circuits Systems, vol. 28, no. 4, April 1981, pp. 319-330.
    [17] A. Zuckerberger, D. Weinstock, and A. Alexandrovitz, “Simulation of three-phase loaded matrix converter,” IEE Proceedings-Electric Power Applications, vol. 143, no. 4, July 1996, pp. 294-300.
    [18] S. Bouchiker, G. A. Capolins, and M. Poloujadoff, “Vector control of a permanent-magnet synchronous motor using AC-AC matrix converter” IEEE Transactions on Power Electronics, vol. 13, no. 6, November. 1998, pp. 1089-1099.
    [19] L. Huber, D. Borojevic, and N. Burany, “Analysis, design and implementation of the space-vectors modulator for forced- commutated cycloconvertors,” IEE Proceedings- Electric Power Applications, vol. 139, no. 2, March 1992, pp. 103-113.
    [20] B. H. Kwon, B. D. Min, and J. H. Kim, “Novel commutation technique of AC-AC converters,” IEE Proceedings- Electric Power Applications, vol. 145, no. 4, July 1998, pp. 295-300.
    [21] D. Casadei, G. Serra, and A. Tani, “The use of matrix converters in direct torque control of induction machine,” IEEE IECON’98, August/September 1998, pp. 744-749.
    [22] A. Alesina and M. G. B. Venturini, “Analysis and Design of optimum-amplitude nine-switch direct AC-AC converters,” IEEE Transactions on Power Electronics, vol. 4, no. 1, January 1989, pp. 101-112.
    [23] D. G. Holmes and T. A. Lipo, “Implementation of a controlled rectifier using AC-AC matrix converter theory,” IEEE Transactions on Power Electronics, vol. 7, no. 1, January 1992, pp. 240-250.
    [24] D. Casadi, G. Grandi, G. Serea, and A. Tani, “Space vector control of matrix converters with unity input power factor and sinusoidal input/output waveforms,” The European Power Electronics Conference Proceedings, 1993, pp. 170-175.
    [25] M. Kazerani and B. T. Ooi, “Feasibility of both vector control and displacement factor correction by voltage source type AC-AC matrix converter,” IEEE Transactions on Industrial Electronics, vol. 42, no. 5, October 1995, pp. 524-530.
    [26] M. Milanovic and B. Dobaj, “Unity input displacement factor correction principle for direct AC to AC matrix converters based on modulation strategy,” IEEE Transactions on Circuits and Systems, part I, vol. 47, no. 2, February 2000, pp. 221-230.
    [27] D. Csadei, G. Serra, and A. Tani, “Reduction of the input current harmonic content in matrix converters under input/output unbalance,” IEEE Transactions on Industrial Electronics, vol. 45, no. 3, June 1998, pp. 401-411.
    [28] D. Casadei, G. Serra, and A. Tani, “A general approach for the analysis of the input power quality in matrix converters,” IEEE Transactions on Power Electronics, vol. 13, no. 5, September 1998, pp. 882-891.
    [29] P. Nielsen, F. Blabjerg, and J. K. Pedersen, “New protection issue of a matrix converter: design considerations for adjustable-speed drives,” IEEE Transactions on Industry Applications, vol. 35, no. 5, September/October 1999, pp. 1150-1161.
    [30] K. Mino, Y. Okuma, and K. Kuroki, “Direct-linked-type frequency changer based on DC-clamped bilateral switching circuit topology,” IEEE Transactions on Industry Applications, vol. 34, no. 6, November/December 1998, pp. 1309-1317.
    [31] P. W. Wheeler, J. C. Clare, and L. Empringham, “Minimization of matrix converter commutation times,” European Power Electronics Journal, vol. 13, no. 1, March 2003, pp. 12-19.
    [32] S. Bernet, K. Bernet, and T. A. Lipo, “The auxiliary resonant commutated pole matrix converter - a new topology for high power application,” IEEE IAS’96, October 1996, pp. 1242-1249.
    [33] C. T. Pan, T. C. Chen, and J. J. Shieh, “A zero switching loss matrix converter,” IEEE PESC’93, 1993, pp. 545-550.
    [34] C. L. Neft and C. D. Schauder, “Theory and design of a 30-hp matrix converter,” IEEE Transactions on Industry Applications, vol. 28, no. 3, May/June 1992, pp. 546-551.
    [35] D. Casadei, G. Serra, and A. Tani, “The use of matrix converters in direct torque control of induction machine,” IEEE Transactions on Industrial Electronics vol. 48, no. 6, December 2001, pp. 1057- 1064.
    [36] T. F. Podlesak, D. C. Katsis, P. W. Wheeler, J. C. Clare, L. Empringham, and M. Bland, “A 150-kVA vector-controlled matrix converter induction motor drive” IEEE Transactions on Industry Applications, vol. 41, no. 3, May/June 2005, pp. 841-847.
    [37] P. Snary, B. Bhangu, C. M. Bingham, D. A. Stone, and N. Schofield “Matrix converters for sensorless control of PMSMs and other auxiliaries on deep-sea ROVs,” IEE Proceedings-Electric Power Applications,vol.152, no. 2, March 2005, pp. 382–392.
    [38] B. K. Bose, Micro-computer control of power electronics and drives, New York: IEEE Press, 1987.
    [39] W. Leonhard, Control of electrical drives, Berlin: Spring-Verlag, 1996.
    [40] T. S. Radwan, M. A. Rahman, A. M. Osheiba, and A. E. Lashine, “Dynamics analysis of a high performance permanent magnet synchronous motor drive,” Canadian Conference on Electrical and Computer Engineering, May 1996, pp. 611-614.
    [41] L. Empringham, P. W. Wheeler, and J. C. Clare, “Matrix converter bi-directional switch commutation using intelligent gate drives,” IEE PEVSD’98, September 1998, pp. 626-631.
    [42] J. Chang, T Sun, and A. Wang, “Medium power AC-AC converter based on integrated bidirectional power modules, adaptive commutation and DSP control,” IEEE IAS’99, October 1999, pp. 1864-1870.
    [43] L. Zhang, C. Watthanasarn, and W. Shepherd, “Analysis and comparison of control techniques for AC-AC matrix converters,” IEE Proceedings-Electric Power Applications, vol. 145, no. 4, July 1998, pp. 284-294.
    [44] S. Kim, S. K. Sul, and T. A. Lipo, “AC/AC power conversion based on matrix converter topology with unidirectional switches,” IEEE Transactions on Industry Applications, vol. 36, no. 1, January/ February 2000, pp. 139-145.
    [45] H. J. Cha and P. N. Enjeti, “Matrix converter-fed ASDs,” IEEE Industry Applications Magazine, vol. 10, no. 4, July/August 2004, pp. 33-39.
    [46] C. Klumpner and F. Blaabjerg, “Experimental evaluation of ride-through capabilities for a matrix converter under short power interruptions,” IEEE Transactions on Industrial Electronics, vol. 49, no. 2, April 2002, pp. 315-324.
    [47] P. Nielsen, F. Blaabjerg, and J. K. Pedersen, “New protection issues of a matrix converter: design considerations for adjustable-speed drives,” IEEE Transactions on Industry Applications, vol. 35, no. 5, September/ October 1999, pp. 1150-1161.
    [48] C. Klumpner and F. Blaabjerg, “Experimental evaluation of ride-through capabilities for a matrix converter under short power interruptions,” IEEE Transactions on Industrial Electronics, vol. 49, no. 2, April 2002, pp. 315-324.
    [49] C. Klumpner and F. Blaabjerg, “Short term braking capability during power interruptions for integrated matrix converter-motor drives,” IEEE Transactions on Power Electronics, vol. 19, no. 2, March 2004, pp. 303-311.
    [50] C. Klumpner, P. Nielsen, I. Boldea, and F. Blaabjerg, “A new matrix converter motor for industry applications,” IEEE Transactions on Industrial Electronics, vol. 49, no. 2, April 2002, pp. 325-335.
    [51] 網站資料:http://www.gaw.ru/html.cgi/txt/ic/Semikron/igbt
    /semitop/SK60GM123.htm
    [52] Z. Xiangjun, L. Hankui, and X. Dianguo, “Analysis and design of the flyback transformer,” IEEE IECON’03, vol. 1, November 2003, pp.715–719.
    [53] H. Yingyan, G. Yilei, C. Huiming, and Q. Zhaoming, “A novel multioutput forward-flyback converter with secondary side post regulation,” IEEE PESC’04, vol. 1, June 2004, pp. 618–621.
    [54] Spectrum Digital, TMS320LF2407 Evaluation Module Technical Reference, 2000.
    [55] Spectrum Digital, TMS320C2xx/C24x Code Composer User’s Guide, 2000.
    [56] Texas Instruments, TMS320C24x DSP Design Workshop Student Guide, 1998.
    [57] Texas Instruments, TMS320C1x/C2xx/C5x Assembly Language Tools User’s Guide, 1995.
    [58] Texas Instruments, TMS320F/C240 DSP Controllers Peripherals Library and Specific Devices Reference Guide, 1999.
    [59] Texas Instruments, TMS320LF/LC240x DSP Controllers System and Peripherals Reference Guide, 2000.

    無法下載圖示 全文公開日期 2011/07/24 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE