簡易檢索 / 詳目顯示

研究生: 吳淑楷
Shu-kai Wu
論文名稱: 手部遠端指向螢幕中三維目標物的移動績效
Performance of Remote Target Pointing Hand Movement in a 3D environment
指導教授: 李永輝
Yung-Hui Lee
口試委員: 林久翔
none
紀佳芬
none
江行全
none
王茂駿
none
陳一郎
none
石裕川
none
學位類別: 博士
Doctor
系所名稱: 管理學院 - 工業管理系
Department of Industrial Management
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 75
中文關鍵詞: 三維深度知覺Fitts law手部點選移動移動策略
外文關鍵詞: Target pointing hand movement, three-dimension
相關次數: 點閱:444下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究在於調查及探討無穿戴三維及時偵測系統中,手部遠距指向螢幕中三維目標物的移動績效,本研究採用不同距離、位置、大小的目標物,主要在於測量總移動時間(total movement time)、主要次移動時間(primary submovement time)、次要次移動時間(secondary submovement time)、平均速度、最高速度等運動學上的參數,另外也透過軌跡移動、Fitts law及移動策略評估手部在空間中遠距操控的特性與績效。本研究結果指出目標物在上半部且有深度的總移動時間(3.10秒)少於目標物在上半部且無深度的總移動時間(3.79秒),另外,目標物在下半部且無深度的總移動時間(2.94秒)少於目標在下半部且有深度的總移動時間(3.57秒),由於在2D螢幕中顯示3D目標物時,目標物會隨著距離深度而會有不同的視覺深度回饋於受試者,本研究發現在正前方有深度(Forward)的目標物所花費的總移動時間最長(3.94秒);在移動軌跡中,觀察出不同的移動策略,第一種為直線移動策略(straight line moving strategy),通常出現在有深度上方移動中,第二種為沿軸向移動策略(sequential axis moving strategy),直線移動策略的總移動時間(3.08秒)少於沿軸向移動策略的總移動時間(3.44秒);本研究修改Fitts law公式所得的結果,在無深度總移動時間R2解釋能力由0.72提升至0.894,在有深度則由0.72提升至0.869; 本研究結果建議能在深度知覺、目標物大小位置等因素中,提供未來無穿戴互動介面及螢幕中三維目標物的人機介面設計幫助,創造更直覺且人性化的互動設計。


This study investigates and models the performance of target pointing hand movements in a free-hand, touchless 3D environment. The targets in this study had different positions, sizes, and distances. Performance measurements included total movement time and movement trajectories. The total movement time consisted of a “primary submovement time” and a “secondary submovement time.” Results indicate that the total movement time for targets with depth in the upper part of the spherical framework (3.10s) was shorter than that for targets without depth (3.79s). The time for targets without depth in the lower part of the spherical framework (2.94s) was shorter than that for targets with depth (3.57s). Within a 3D perspective display, the perception of a distance and size depends on its depth position. Our results confirm the adequacy of the 3D information in the display by showing the longest total movement time was observed for the reach of “Forward” target(3.94 s). This study improved and suggested the modified Fitts’ model, and the R2 explained the total movement time from 0.72 to 0.894 without depth and from 0.72 to 0.869 with depth respectively. This study shows that participants navigated the 3D space naturally and could move the cursor using both sequential axis moving strategy and straight line moving strategy.Real-life applications of the proposed method include interface design for 3D perspective displays and hand movements in 3D environments.

摘要.................................................I ABSTRACT............................................II 致謝.................................................III CONTENT.............................................IV LIST OF FIGURES.................................... VI LIST OF TABLES..................................... VIII CHAPTER 1 INTRUDUCTION..............................1 1.1Study Motivation............................1 1.2Study Object................................3 1.3Study framework.............................4 CHAPTER 2 LITERATURE REVIEW.........................7 2.1 The analysis of existing input devices..........7 2.2 Input device and display........................14 2.3 Depth perception................................16 2.4 Fitts Law......................................20 2.5 Movement time...................................25 2.6 Summary.........................................26 CHAPER3 METHOD......................................27 3.1. Subjects.......................................27 3.2. The 3D Control.................................27 3.3 The 3D perspective display......................29 3.4 Tasks...........................................31 3.5 Performance Measurements........................33 3.5.1 Movement time.................................34 3.5.2 Movement strategies...........................38 3.5.3 Static hand tremor............................39 3.6 Experimental Procedure..........................39 3.7 Data analysis...................................40 CHPTER4 RESULT......................................41 4.1.Reaction time...................................41 4.2. Primary submovement time.......................41 4.3. Secondary submovement time.....................45 4.4. Total movement time............................46 4.5. Mean velocity..................................48 4.6. Peak velocity..................................49 4.7. Relative time to peak velocity.................50 4.8. Relative primary submovement movement time.....51 4.9. Fitts’ Law.....................................52 4.10. Movement trajectory...........................56 CHAPTER 5 DISCUSSION................................58 5.1. Movement time (2D vs 3D).......................58 5.2. Affecting factors..............................60 5.3. Z-axis movements...............................62 5.4. Interaction of “depth” and “position”..........62 CHAPTER6 CONCLUSION.................................64 6.1 Overview........................................65 6.2 Future Research.................................67 REFERENCES..........................................69 作者介紹..............................................73

Accot, J., Zhai, S. (2003). Refining Fitts' law models for bivariate pointing. Proceedings of the CHI 2003, ACM Conference on Human Factors in Computing Systems , 193-200.
Amirabdollahian F, Gomes GT, Johnson GR, (2005).The peg-in-hole: a VR-based haptic assessment for quantifying upper limb performance and skills. In: Proceedings of the 9th IEEE international conference on rehabilitation robotics,422–425.
Arnaut, L.Y., Greenstein, J.S. (1990). Is display/control gain a useful metric for optimizing an interface? Human Factors ,32, 651-663.
Cabral, M. C., Morimoto, C. H., Zuffo, M. K.(2005). On the usability of gesture interfaces in virtual reality environments. Proceedings of the2005 Latin American conference on Human-Computer Interaction, 100-108.
Casiez, Gery, Plenacoste, Patricia, Chaillou, Christophe.(2004). Does DOF Separation on Elastic Devices Improve User 3D Steering Task Performance?. Computer Human Interaction 6th Asia Pacific Conference , 70-80.
Chuang, T.Y., Huang, W.S., Chiang, S.C., Tsai, Y.A., Doong, J.L., Cheng, H.(2002). A virtual reality-based system for hand function analysis. Computer Methods & Programs in Biomedicine, 69, 3, 189-196.
Chun, K., Verplank, B., Barbagli, F.,Salisbury, K.(2004). Evaluating haptics and 3D stereo displays using Fitts’ law. In Proceeding of the 3rd IEEE Workshop on HAVE, 53–58.
Comaniciu, D., Ramesh, V., and Meer, P.(2003). Kernel-based object tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence, 25, 564-575.
Donker,A.and Reitsma,P.(2007). Drag-and-drop errors in young children’s use of the mouse. Interacting with Computers ,19, 257–266.
Fitts, P. M.(1954). The information capacity of the human motor system in controlling the amplitude of movement. Journal of Experimental Psychology, 47, 381-391.
Gaspar, J., Winters, N. and Santos-Victor, J.(2000). Vision-based navigation and environmental representations with an omnidirectional camera. IEEE Transactions on Robotics and Automation, 16,6,890-898.
Grossman, T. and Balakrishnan, R.(2004). Pointing at trivariate targets in 3D environment. Proceedings of the CHI 2004, ACM Conference on Human Factors in Computing Systems, p.447-454.
Hsu, S. H., Huang, C. C., Tsuang, Y. H. ,Sun, J. S.(1999).Effects of age and gender on remote pointing performance and their design implications. International Journal of Industrial Ergonomics, 23, 461-471.
Jacob, O. W., Brad, A. M., and Aung, H. H.(2008).The performance of hand postures in front- and back-of-device interaction for mobile computing.International Journal of Human-Computer Studies, 66, 12, p.857-875.
Jagacinski, R. J., & Monk, D. L. (1985). Fitts' law in two dimensions with hand and head movements. Journal of Motor Behavior, 17, 77-95
Jagacinski, R.J., Repperger, D.W., Moran, M.S., Ward, S.L.,Glass, B.(1980).Fitts’ law and the micro-structure of rapid discrete movements. Journal of Experimental Psychology: Human Perception and Performance ,6, 309-320.
Keskin, C., Erkan, A., Akarun , L.(2003). Real time hand tracking and 3D gesture recognition for interactive interfaces using HMM. In Proceedings of the Joint International Conference ICANN/ICONIP ,567-570.
Langolf, G. D., Chaffin, D. B., Foulke, J. A. (1976). An investigation of Fitts' law using a wide range of movement amplitudes. Journal of Motor Behaviour, 8, 113-128.
Lee, Y.H. and Sue, M.S.(2008).Design and validation of a desk-free and posture independent input device. Applied Ergonomics, 39, 399-406.
Lee, Y.H. and Ko, C.H.(2009). A remote, hand-free, 3-dimensional finger trajectory tracking system and its application. Proceedings of the 17th International Congress of International Ergonomics Association , 10-16.
Liao, M. J. and Johnson, W. W.( 2004). Characterizing the effects of droplines on target acquisition performance on a 3-D perspective display. Human Factors, 46, 3, 476-496.
Liao, M., Jagacinski, R. J., Greenberg, N. (1997). Quantifying the performance limitations of older and younger adults in a target acquisition task. Journal of Experimental Psychology: Human Perception and Performance, 23, 1644-1664.
MacKenzie, I. S. and Buxton, W.(1992). Extending Fitts’ law to two-dimensional tasks. Proceedings of ACM CHI 2003 Conference on Human Factors in Computing Systems,219-226.
McKenna, S. J. and Morrison, K.(2004). A comparison of skin history and trajectory-based representation schemes for the recognition of user-specified gestures. Pattern Recognition ,37, 5, 999-1009.
Murata, A. and Iwase H.( 2001). Extending Fitts’ law to a three-dimensional pointing task, Human Movement Science, 20, 791-805.
Nakamura, T., Takahashi, S., Tanaka, J.(2008). Double-crossing: A new interaction technique for hand gesture interfaces. Computer Human Interaction 8th Asia Pacific Conference , 292-300.
Sandfeld, J., Jensen, B.R.(2005). Effect of computer mouse gain and visual demand on mouse clicking performance and muscle activation in a young and elderly group of experienced computer users. Applied Ergonomics, 36, 547–555.

Soukoreff , R. W. and MacKenzie, I. S. (2004). Towards a standard for pointing device evaluation, perspectives on 27 years of Fitts’ law research in HCI. International Journal of Human-Computer Studies, 61,751–789
Thompson SG, McConnell DS, Slocum JS, Bohan M. (2007). Kinematic analysis of multiple constraints on a pointing task. Hum Movement Science ,26, 11-26.
Van Erp, J. B. F., Oving, A.B.(2002). Control Performance With Three Translational Degrees of Freedom. Human Factors, 44, 1, 144-156.
Varona, J., Jaume-i-Capo, A., Gonzalez, J.and Perales, F.J.(2009). Toward natural interaction through visual recognition of body gestures in real-time. Interacting With Computers 21, 3-10.
Walker, N., Meyer, D.E., Smelcer, J.B.(1993). Spatial and temporal characteristics of rapid cursor-positioning movements with electromechanical mice in human-computer interaction. Human Factors ,35, 431-458.
Wu,Y., and Yu,Y.(2006). A field model for human detection and tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence 28 ,5, 753–765.
Zhai, S., Kong, J., Ren, X. (2004).Speed-accuracy trade-off in Fitts’law tasks on the equivalency of actual and nominal pointing precision. Journal of Human Computer Studies 61, 823-856.
Zhai, S., Milgram, P., and Rastogi, A. (1997). Anisotropic human performance in six degree-of-freedom tracking: An evaluation of three-dimensional display and control interfaces. IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans, 27,4, 518-528.

QR CODE