簡易檢索 / 詳目顯示

研究生: 莊英泰
Ying-Tai Chuang
論文名稱: 金屬玻璃鍍層應用於刺青針之人體實驗及修整裝置之研究
Beneficial Effects of Metallic Glass Coating on Tattoo Needles and Conditioning Device
指導教授: 朱瑾
Jinn Chu
口試委員: 朱瑾
Jinn Chu
陳炤彰
Chao-Chang A. Chen
朱閔聖
Min-Sheng Chu
曾元生
Yuan-Sheng Tseng
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 173
中文關鍵詞: 刺青針修整裝置金屬玻璃鍍層
外文關鍵詞: Tattoo needles, conditioning devices, TFMG
相關次數: 點閱:163下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  • Chapter 1. Introduction 1 1.1 Overview of thin film metallic glass 1 1.2 Objective and motivation 1 Chapter 2. Literature Review 3 2.1 Introduction of tattoo 3 2.1.1 Composition of tattoo inks and their properties 4 2.1.2 Four stages of healing process after tattooing 5 2.1.3 Classification of each tattoo needles in coding system 6 2.2 Principle of Chemical Mechanical planarization 7 2.2.1 Introduction of conditioning device 8 2.2.2 Specification of conditioning device 8 2.2.3 Effect of pad groove geometry on material removal characteristics in CMP process 11 2.3 Thin film metallic glass 13 2.3.1 Low coefficient of friction (CoF) 15 2.3.2 Biocompatibility and Antibacterial application 17 2.3.3 Application of TFMG on tattoo needles 20 2.3.4 Application of TFMG on dicing blade to improve dicing properties 25 2.4 High power impulse magnetron sputtering (HiPIMS) 26 Chapter 3. Experimental Procedures 28 3.1 Sample preparations 29 3.1.1 Tattoo needle preparations (Part 1-Tattoo needles) 29 3.1.2 Conditioning device preparations (Part 2-Conditioning devices) 30 3.2 Thin film metallic glass deposition 31 3.3 Material characterizations of TFMG 33 3.3.1 Crystallographic analysis (XRD) 33 3.3.2 Microstructure analysis (SEM) 34 3.3.3 Chemical composition analysis (EPMA) 35 3.3.4 Hydrophobicity analysis (Contact angle meter) 35 3.4 Insertion Test (MTS) (Part 1-Tattoo needles) 36 3.4.1 Test material: Pork skin 37 3.4.2 Surface morphology observation on pork skin (Confocal microscopy) 37 3.4.3 Tattoo ink coloring analysis (Image J) 38 3.5 Human test (Part 1-Tattoo needles) 38 3.5.1 Characterizations of tattoo needles and rotary tattoo machine 39 3.5.2 Subject recruitment 40 3.5.3 Wound healing observation and condition of tattoo ink coloring 40 3.6 CMP experiment (Polishing machine and swing-arm system) (Part 2-Conditioning devices) 41 3.6.1 Experimental consumables 45 3.6.1.1 Specification of oxide wafer 45 3.6.1.2 Specification of polishing pad with non-groove and x-y type groove 46 3.6.1.3 Specification of slurry 48 3.6.2 Surface roughness measurement of oxide wafers (CCI) 48 3.6.3 Material removal rate analysis (Ellipsometer) 49 Chapter 4. Results and discussion 51 4.1 Characterizations of TFMG 51 4.1.1 Crystallographic analysis 51 4.1.2 Chemical composition analysis (EPMA) 52 4.1.3 Hydrophobicity analysis (Water and tattoo ink contact angle) 52 4.2 Insertion/retraction performance of tattoo needle (Part 1-Tattoo needles) 56 4.2.1 Insertion test results – Needle type: 1005RL 56 4.2.1.1 Rubber insertion 58 4.2.1.2 Tattoo ink coloring effect 59 4.2.2 Insertion test results – Needle type: 1205M1 62 4.2.2.1 Rubber insertion 62 4.2.2.2 Tattoo ink coloring effect 63 4.3 Human Test (Part 1-tattoo needles) 66 4.3.1 Wound healing observation and condition of tattoo ink coloring 66 4.3.2 SEM observation of the needles 74 4.4 Chemical mechanical planarization experiment (Part 2-Conditioning device) 81 4.4.1 Effects of TFMG coatings on polishing pad roughness and bearing area ratio 82 4.4.1.1 The type of polishing pad: IC1000 polyurethane pad with non-groove 82 4.4.1.2 The type of polishing pad: IC1000 polyurethane pad with x-y type groove 92 4.4.2 Effects of TFMG coatings on wafer roughness 101 4.4.2.1 The type of polishing pad: IC1000 polyurethane pad with non-groove 101 4.4.2.2 The type of polishing pad: IC1000 polyurethane pad with x-y type groove 114 4.4.3 Effects of TFMG coatings on material removal rate 123 4.4.3.1 The type of polishing pad: IC1000 polyurethane pad with non-groove 123 4.4.3.2 The type of polishing pad: IC1000 polyurethane pad with x-y type groove 129 4.4.4 Effects of TFMG coatings on pad cutting rate 135 4.4.5 Surface composition analysis on oxide wafers 137 4.4.6 Composition analysis of TFMG coating on conditioning device 147 4.5 Discussion 148 4.5.1 Tattoo needle 148 4.5.2 Conditioning device 148 Chapter 5. Conclusions and suggestions for future works 150 5.1 Conclusions 150 5.2 Future works 151 5.2.1 Tattoo needles 151 5.2.2 Conditioning device 151 References 152

    1. TATTOOS-INTRO, A Brief Introduction to Tattoo Art. 2012).
    2. History of Tattoos - Meaning and Origin. 2022).
    3. C. Breuner, D. Levine, Adolescent and Young Adult Tattooing, Piercing, and Scarification.
    4. A.A.o. Pediatrics, Tattooing and Body Piercing. 2007).
    5. I. Schreiver, B. Hesse, C. Seim, H. Castillo-Michel, J. Villanova, P. Laux, N. Dreiack, R. Penning, R. Tucoulou, M. Cotte, A. Luch, Synchrotron-based nu-XRF mapping and mu-FTIR microscopy enable to look into the fate and effects of tattoo pigments in human skin, Sci Rep 7(1) (2017) 11395.
    6. M. Falconi, G. Teti, M. Zago, A. Galanzi, L. Breschi, S. Pelotti, A. Ruggeri, G. Mazzotti, Influence of a commercial tattoo ink on protein production in human fibroblasts, Arch Dermatol Res 301(7) (2009) 539-47.
    7. M.D. Pazos, Y. Hu, Y. Elani, K.L. Browning, N. Jiang, A.K. Yetisen, Tattoo Inks for Optical Biosensing in Interstitial Fluid, Adv Healthc Mater 10(21) (2021) e2101238.
    8. M. Giulbudagian, I. Schreiver, A.V. Singh, P. Laux, A. Luch, Safety of tattoos and permanent make-up: a regulatory view, Arch Toxicol 94(2) (2020) 357-369.
    9. M. Dirks, Tattooed Skin and Health, 2015.
    10. G. Forte, F. Petrucci, A. Cristaudo, B. Bocca, Market survey on toxic metals contained in tattoo inks, Sci Total Environ 407(23) (2009) 5997-6002.
    11. B. Battistini, F. Petrucci, I. De Angelis, C.M. Failla, B. Bocca, Quantitative analysis of metals and metal-based nano- and submicron-particles in tattoo inks, Chemosphere 245 (2020) 125667.
    12. Tattoo Healing Process and Stages. 2019).
    13. B. Chris, Stages of Tattoo Healing Process. 2022).
    14. David, ABOUT TATTOO NEEDLES. 2012).
    15. Shero, TATTOO NEEDLES & CODES. 2014).
    16. Tattoo Needles Guide. 2021).
    17. N. Pinela, Tattoo Needle Sizes And Uses: A Guide For The Best Tattoo, (2021).
    18. M.N. Krishnan, J. W.
    Cook, L. M., Chemical Mechanical Planarization Slurry Chemistry, Materials, and Mechanisms, (2009).
    19. H. Lee, H. Kim, H. Jeong, Approaches to Sustainability in Chemical Mechanical Polishing (CMP): A Review, International Journal of Precision Engineering and Manufacturing-Green Technology 9(1) (2021) 349-367.
    20. H. Lee, S. Lee, Investigation of pad wear in CMP with swing-arm conditioning and uniformity of material removal, Precision Engineering 49 (2017) 85-91.
    21. D. Zhao, X. Lu, Chemical mechanical polishing: Theory and experiment, Friction 1(4) (2013) 306-326.
    22. J.M. Steigerwald, S.P. Murarka, R.J. Gutmann, Chemical mechanical planarization of microelectronic materials, John Wiley & Sons1997.
    23. K.H. Park, H.J. Kim, O.M. Chang, H.D. Jeong, Effects of pad properties on material removal in chemical mechanical polishing, Journal of Materials Processing Technology 187-188 (2007) 73-76.
    24. M.Y. Tsai, C.H. Chen, J.H. Chiang, T.S. Yeh, Development and Analysis of Double-Faced Radial and Cluster-Arranged CMP Conditioning device, Mathematical Problems in Engineering 2014 (2014) 1-9.
    25. M.-Y. Tsai, Polycrystalline diamond shaving conditioner for CMP pad conditioning, Journal of Materials Processing Technology 210(9) (2010) 1095-1102.
    26. H.K. Sakamoto, T., Polishing pad conditioner, (2009).
    27. R.F. Chen, 具保護膜之研磨工具修整器及其保護膜成形方法, (2011).
    28. Y. Guo, H. Lee, Y. Lee, H. Jeong, Effect of pad groove geometry on material removal characteristics in chemical mechanical polishing, International Journal of Precision Engineering and Manufacturing 13(2) (2012) 303-306.
    29. W. Klement, R. Willens, P. Duwez, Non-crystalline structure in solidified gold–silicon alloys, Nature 187(4740) (1960) 869-870.
    30. J.P. Chu, J.S.C. Jang, J.C. Huang, H.S. Chou, Y. Yang, J.C. Ye, Y.C. Wang, J.W. Lee, F.X. Liu, P.K. Liaw, Y.C. Chen, C.M. Lee, C.L. Li, C. Rullyani, Thin film metallic glasses: Unique properties and potential applications, Thin Solid Films 520(16) (2012) 5097-5122.
    31. C.H. Chang, C.M. Lee, J.P. Chu, P.K. Liaw, S.C.J. Jang, Fatigue property improvements of ZK60 magnesium alloy: Effects of thin film metallic glass, Thin Solid Films 616 (2016) 431-436.
    32. H. Jia, F. Liu, Z. An, W. Li, G. Wang, J.P. Chu, J.S. Jang, Y. Gao, P.K. Liaw, Thin-film metallic glasses for substrate fatigue-property improvements, Thin Solid Films 561 (2014) 2-27.
    33. J.P. Chu, C.C. Yu, Y. Tanatsugu, M. Yasuzawa, Y.L. Shen, Non-stick syringe needles: Beneficial effects of thin film metallic glass coating, Sci Rep 6 (2016) 31847.
    34. L. Huang, C. Pu, R.K. Fisher, D.J. Mountain, Y. Gao, P.K. Liaw, W. Zhang, W. He, A Zr-based bulk metallic glass for future stent applications: Materials properties, finite element modeling, and in vitro human vascular cell response, Acta Biomater 25 (2015) 356-68.
    35. J.P. Chu, T.Y. Liu, C.L. Li, C.H. Wang, S.C. Jang, M.J. Chen, S.H. Chang, W.C. Huang, Fabrication and characterizations of thin film metallic glasses:
    Antibacterial property and durability study for medical application, (2014).
    36. C.-N. Cai, C. Zhang, Y.-S. Sun, H.-H. Huang, C. Yang, L. Liu, ZrCuFeAlAg thin film metallic glass for potential dental applications, Intermetallics 86 (2017) 80-87.
    37. P.-T. Chiang, G.-J. Chen, S.-R. Jian, Y.-H. Shih, J.S.-C. Jang, C.-H. Lai, Surface antimicrobial effects of Zr61Al7. 5Ni10Cu17. 5Si4 thin film metallic glasses on Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, Acinetobacter baumannii and Candida albicans, Fooyin Journal of Health Sciences 2(1) (2010) 12-20.
    38. C.-H. Chang, C.-L. Li, C.-C. Yu, Y.-L. Chen, S. Chyntara, J.P. Chu, M.-J. Chen, S.-H. Chang, Beneficial effects of thin film metallic glass coating in reducing adhesion of platelet and cancer cells: Clinical testing, Surface and Coatings Technology 344 (2018) 312-321.
    39. J.P. Chu, W.C. Liao, P. Yiu, M.T. Chiou, K.H. Su, Metallic glass coating for improved needle tattooing performance in reducing trauma: analysis on porcine and pig skins, Sci Rep 10(1) (2020) 20318.
    40. J.P. Chu, B.Z. Lai, P. Yiu, Y.L. Shen, C.W. Chang, Metallic glass coating for improving diamond dicing performance, Sci Rep 10(1) (2020) 12432.
    41. J. Shen, X. Zhu, J. Chen, P. Tao, X. Wu, Investigation on the Edge Chipping in Ultrasonic Assisted Sawing of Monocrystalline Silicon, Micromachines (Basel) 10(9) (2019).
    42. Magnetron sputtering: overview.
    43. 張家豪, 金屬玻璃鍍層用於提升鎂合金疲勞性質, 降低高速鋼鑽頭鑽孔溫度及降低風阻研究., (2019).
    44. C.-C.A. Chen, J.-C. Li, W.-C. Liao, Y.-J. Ciou, C.-C. Chen, Dynamic Pad Surface Metrology Monitoring by Swing-Arm Chromatic Confocal System, Applied Sciences 11(1) (2020).
    45. C.-C.A.C. Chen, C. H. Wang, P. K., Development of 3D confocal laser measurement instrument for polishing pad analysis with fractal dimension and bearing ratio methods, (2014).
    46. C.-C.A.C. Chen, Y. T., Research of dressing break-in time of polishing pad for Cu-chemical mechanical polishing process, (2014).
    47. L.C. Kaplonek W., Coherence Correlation Interferometry in surface topography measurements., (2012).

    無法下載圖示 全文公開日期 2032/09/21 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE