Basic Search / Detailed Display

Author: 劉宇哲
Yu-Che Liu
Thesis Title: 基於直方圖匹配和拼接線融合的顏色一致性增強方法
A GENERAL COLOR CONSISTENCY ENHANCEMENT METHOD USING A CORRELATED HISTOGRAM MATCHING- AND STITCHING LINE-BASED FUSION APPROACH
Advisor: 鍾國亮
Kuo-Liang Chung
Committee: 鍾國亮
Kuo-Liang Chung
黃元欣
Yuan-Shin Hwang
鮑興國
Hsing-Kuo Pao
廖弘源
Hong-Yuan Liao
范國清
Kuo-Chin Fan
Degree: 碩士
Master
Department: 電資學院 - 資訊工程系
Department of Computer Science and Information Engineering
Thesis Publication Year: 2023
Graduation Academic Year: 111
Language: 英文
Pages: 43
Keywords (in Chinese): 顏色一致性提升顏色校正共相關直方圖匹配融合多視圖縫線
Keywords (in other languages): Color consistency enhancemen, Color correction, Correlated histogram matching, Fusion, Multi-view images, stitching lines
Reference times: Clicks: 298Downloads: 1
Share:
School Collection Retrieve National Library Collection Retrieve Error Report
  • 過去,已經出現了多種多視圖圖像的顏色校正方法。然而,由於缺乏利用拼接線上的資訊和在重疊區域內來源像素和目標像素之間的共相關紋理考慮,限制了顏色校正的性能。在這篇論文中,針對多視圖圖像,我們提出了一種基於融合共相關直方圖匹配和拼接線的顏色一致性增強方法,以改進現有的顏色校正方法。首先,對於給定的多視圖圖像,執行一種現有的顏色校正方法。接下來,提出了一種基於梯度幅值的方法,用於安排這些圖像的顏色一致性增強順序。然後,對於所考慮的目標圖像的每個重疊區域,導出基於Correlated Histogram Matching(CHM)的顏色增強函數和基於Stitching Line(SL)的顏色增強函數。使用所獲得的顏色增強函數對所考慮的目標圖像的所有重疊區域進行顏色增強,進一步使用所提出的CHMSL融合方法增強每個目標像素的顏色。基於典型的多視圖圖像資料集,進行了全面的實驗,證明了我們的方法相對於最先進的方法可以實現顯著的客觀和主觀的顏色校正增強效果。


    In the past, several color correction methods for multi-view images have been developed. However, due to a lack of consideration with regard to fusing the information on stitching lines and the correlated textures between source and target pixels within the overlapping areas, it limits the color correction performance. For multi-view images, in this thesis, we propose a general color consistency enhancement method using the correlated histogram matching- and stitching line based (CHMSL-based) fusion approach to improve existing color correction methods. Initially, one existing color correction method is performed on the given multi-view images. Next,
    a gradient magnitude based approach is proposed to schedule the color consistency enhancement order for these images. Then, for each overlapping area of the considered target image, the CHM based color enhancement function and the SL-based color enhancement function are derived. Using the derived color enhancement functions for all overlapping areas of the considered target image, the color of each target pixel is further enhanced using the proposed CHMSL-based fusion approach. Based on typical multi-view image datasets, comprehensive experiments have been carried out to demonstrate that our method can achieve substantial objective and subjective color correction enhancement effects relative to the state-of-the-art methods.

    Recommendation Letter . . . . . . . . . . . . . . . . . . . . . . . . i Approval Letter . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii Abstract in Chinese . . . . . . . . . . . . . . . . . . . . . . . . . . iii Abstract in English . . . . . . . . . . . . . . . . . . . . . . . . . . iv Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . v Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . 4 2 Proposed GENERAL CHMSL-based COLOR consistency en-hancement method . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.1 Gradient magnitude-based approach for schedule the color consistency enhancement order of images . . . . . . . . . 7 2.2 Proposed CHMSL-based fusion approach for color consistency enhancement . . . . . . . . . . . . . . . . . . . . . 8 2.2.1 Derive CHM-based color consistency enhancement functions: . . . . . . . . . . . . . . . . . . . . . . 10 2.2.2 Derive stitching line-based color consistency enhancement functions: . . . . . . . . . . . . . . . 12 2.2.3 Proposed CHMSL-based fusion approach for color consistency enhancement: . . . . . . . . . . . . . 14 3 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.1 Objective quality enhancement merit of our method . . . . 18 3.2 Subjective quality enhancement merit of our method . . . 22 4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

    [1] M. Brown and D. G. Lowe, “Automatic panoramic image stitching using invariant features,” International Journal of Computer Vision, vol. 74, pp. 59–73, 2007.
    [2] U. Fecker, M. Barkowsky, and A. Kaup, “Histogram-based prefiltering for luminance and chrominance compensation of multiview video,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 18, no. 9, pp. 1258–1267, 2008.
    [3] Y. Xiong and K. Pulli, “Color matching for high-quality panoramic images on mobile phones,” IEEE Trans. Consum. Electron., vol. 56, no. 4, pp. 2592–2600, 2010.
    [4] L. Yu, Y. Zhang, M. Sun, X. Zhou, and C. Liu, “An auto-adapting global-to-local color balancing method for optical imagery mosaic,” ISPRS Journal of Photogrammetry and Remote Sensing, vol. 132,pp. 1–19, 2017.
    [5] R. Cresson and N. Saint-Geours, “Natural color satellite image mosaicking using quadratic programming in decorrelated color space,” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 8, pp. 4151 – 4162, 2015.
    [6] M. Xia, J. Yao, and Z. Gao, “A closed-form solution for multi-view color correction with gradient preservation,” ISPRS Journal of Photogrammetry and Remote Sensing, vol. 157, pp. 188–200, 2019.
    [7] T. Shen, J. Wang, T. Fang, S. Zhu, and L. Quan, “Color correction for image-based modeling in the large,” in Computer Vision – ACCV 2016 (S.-H. Lai, V. Lepetit, K. Nishino, and Y. Sato, eds.), (Cham),pp. 392–407, Springer International Publishing, 2017.
    [8] J. Park, Y.-W. Tai, S. N. Sinha, and I. S. Kweon, “Efficient and robust color consistency for community photo collections,” 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),pp. 430–438, 2016.
    [9] F. Fang, T. Wang, Y. Fang, and G. Zhang, “Fast color blending for seamless image stitching,” IEEE Geoscience and Remote Sensing Letters, vol. 16, no. 7, pp. 1115–1119, 2019.
    [10] K.-L. Chung and D.-Y. Row, “An adaptive joint bilateral interpolation-based color blending method for stitched uav images,” Remote Sensing, vol. 14, no. 21, p. 5440, 2022.
    [11] L. Li, M. Xia, C. Liu, L. Li, H. Wang, and J. Yao, “Jointly optimizing global and local color consistency for multiple image mosaicking,” ISPRS Journal of Photogrammetry and Remote Sensing, vol. 170,pp. 45–56, 2020.
    [12] H. Cui, G. Zhang, T.-Y. Wang, X. Li, and J. Qi, “Combined model color-correction method utilizing external low-frequency reference signals for large-scale optical satellite image mosaics,” IEEE Transactions on Geoscience and Remote Sensing, vol. 59, no. 6, pp. 4993–5007, 2021.
    [13] C. Ding and Z. Ma, “Multi-camera color correction via hybrid histogram matching,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 31, no. 9, pp. 3327–3337, 2021.
    [14] J. Yang, L. Liu, J. Xu, Y. Wang, and F. Deng, “Efficient global color correction for large-scale multipleview images in three-dimensional reconstruction,” ISPRS Journal of Photogrammetry and Remote Sensing, vol. 173, pp. 209–220, 2021.
    [15] Y. Li, L. Li, J. Yao, M. Xia, and H. Wang, “Contrast-aware color consistency correction for multiple images,” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 15,pp. 4941–4955, 2022.
    [16] Y. Li, H. Yin, J. Yao, H. Wang, and L. Li, “A unified probabilistic framework of robust and efficient color consistency correction for multiple images,” ISPRS Journal of Photogrammetry and Remote Sensing, vol. 190, pp. 1–24, 2022.
    [17] Z. Zhan, L. Zheng, M. Wei, M. Yu, and W. Jian, “Aerial image color balancing based on rank-deficient free network,” IEEE Access, vol. 11, pp. 18838–18854, 2023.
    [18] Z. Wang, A. Bovik, H. Sheikh, and E. Simoncelli, “Image quality assessment: from error visibility to structural similarity,” IEEE Trans. Image Process., vol. 13, no. 4, pp. 600–612, 2004.
    [19] N. Otsu, “A threshold selection method from gray-level histograms,” IEEE Trans. Syst. Man Cybern.,vol. 9, no. 1, pp. 62–66, 1979.
    [20] Y. Yuan, F. Fang, and G. Zhang, “Superpixel-based seamless image stitching for uav images,” IEEE Transactions on Geoscience and Remote Sensing, vol. 59, no. 2, pp. 1565–1576, 2021

    無法下載圖示
    Full text public date 2026/06/15 (Internet public)
    Full text public date 2026/06/15 (National library)
    QR CODE