簡易檢索 / 詳目顯示

研究生: 蔡承澤
CHENG-TSE TSAI
論文名稱: 基於時頻分析之超音波刀具可靠度評估
Evaluation of the Ultrasonic Cutting Tools Reliability by Time-Frequency Analysis
指導教授: 劉孟昆
Meng-Kun Liu
口試委員: 周振嘉
Chen-Chia Chou
藍振洋
LAN,CHEN-YANG
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 102
中文關鍵詞: 超音波切割刀時頻分析法訊號處理希爾伯特-黃轉換支持向量機
外文關鍵詞: Ultrasonic machining, Time-Frequency Analysis, Honeycomb- structure, Signal processing, Hilbert-Huang Transform
相關次數: 點閱:385下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

「超音波刀具(Ultrasonic Cutting Tools)」全名為「蜂巢狀複合材料超音波輔助切割刀具」,是為航太領域中專門切割蜂巢結構(Honeycomb Structure)所研發之工具。此種刀具主要由碳化鎢所組成且價格昂貴,其加工方式為將刀具藉由螺紋鎖緊於超音波變幅桿末端,利用高頻超音波振動切割紙蜂巢結構。一般將超音波主軸安裝在CNC工具機上以加工複雜曲面。然而超音波刀具的可靠度參差不齊,造成換刀時機不易預測,常有刀具尚可切削卻遭淘汰,造成經濟效益低落。
本研究透過高靈敏度麥克風,擷取超音波刀具在無負載時所發出的音壓訊號,藉希爾伯特-黃轉換(Hilbert-Huang Transform)找出刀具之瞬時頻率,進而診斷超音波刀具潛在之可靠度。其中音壓擷取實驗使用自行設計之變幅桿(horn)作為量測的基準,藉由ANSYS的模態分析(Modal Analysis)與簡諧響應分析(Harmonic Response Analysis)做為其前導設計。利用希爾伯特邊際頻譜可擷取特徵找出其特徵參數,並使用支持向量機(Support Vector Machine, SVM)之機器監督式學習技術做為分類器,可判斷刀具的可靠度,除了可以當作交貨時的驗刀機制之外,並可預測刀具的使用期限,達到降低成本之目的。


Ultrasonic cutting tool is specifically used in the manufacturing of honeycomb structure in aerospace engineering. This tool made of expensive tungsten carbine is locked at the end of ultrasonic horn by screw thread, and it generates high frequency ultrasonic vibrations to cut the honeycomb structure. In general, the ultrasonic spindle is mounted on the CNC machine to work on complex surface structure. However, the reliability of the ultrasonic tool is unsteady and its life cycle is unpredictable. It renders low economic efficiency when an eligible tool is replaced in advance to prevent premature failure.
In this research, a high sensitive microphone is used to capture the sound pressure generated by the ultrasonic cutting tool without loading. The time-frequency spectrum generated by Hilbert-Huang transform (HHT) is applied to evaluate the potential reliability of the tool. To conduct the experiment, a customized horn is designed by using modal analysis and harmonic response analysis in ANSYS. The vibration features can be captured by marginal spectrum, and it uses support vector machine (SVM), a supervised learning algorithm, as the classifier to identify the reliability of the tool. The proposed mechanism not only predicts the reliably of the cutting tool, but also can be used as an evaluation standard for the new purchase. Hence the manufacturing cost can be reduced.

摘要I ABSTRACTII 致謝III 表索引VIII 圖索引IX 第一章緒論1 1.1研究背景、動機與目的1 1.2文獻回顧5 1.2.1超音波加工5 1.2.2變幅桿之設計原則6 1.2.3時頻分析法7 1.2.4支持向量機8 1.3論文架構9 第二章理論基礎11 2.1超音波原理與特性11 2.1.1波的種類與特性11 2.1.2超音波加工12 2.1.3超音波加工之基本參數13 2.1.4刀具材料與工件材料14 2.2訊號處理15 2.2.1取樣理論15 2.2.2傅立葉分析17 2.2.3希爾伯特-黃轉換(Hilbert-Huang transform, HHT)19 2.3統計學理論23 2.3.1機率質量函數23 2.3.2峰度23 2.3.3偏度24 第三章超音波變幅桿之設計25 3.1超音波刀具振動系統25 3.2超音波刀具控制變因27 3.3有限元素分析設計30 3.3.1變幅桿之有限元素模型30 3.3.2材料性質設定36 3.3.3邊界條件設定36 3.3.4網格形式37 3.3.5動力分析39 3.4超音波系統數值計算結果41 3.4.1數值計算結果41 3.4.2驗證振幅44 3.5實驗設備46 3.5.1硬體設備46 3.5.2軟體設備47 第四章超音波刀具聲壓擷取實驗48 4.1實驗方法48 4.2資料分析與量化50 4.3時域分析結果52 4.4頻域分析結果60 4.5時頻分析結果65 4.6敘述統計量與刀具可靠度之探討71 4.6.1特徵擷取71 4.6.2刀具特徵與可靠度之探討72 第五章支持向量機之應用與探討74 5.1支持向量機原理74 5.1.1超平面與二次規劃之問題與推導75 5.1.2多類別支持向量機82 5.2SVM之模型正確率評估85 5.3基於SVM之刀具可靠度分析86 5.4SVM分類準確率評估87 5.4.1SVM分析方法87 5.4.2逕向基核函數90 5.4.3線性核函數91 第六章結果與討論92 6.1結論92 6.2未來研究方向97 參考文獻98 附錄102

[1]Wood, Robert Williams; Loomis, Alfred L. xxxviii. the physical and biological effects of high-frequency sound-waves of great intensity. the london, edinburgh, and dublin philosophical magazine and journal of science, 1927.
[2]Balamuth, Lewis. ultrasonic surgical methods. u.s. patent no 3,862,630, 1975.
[3]Dam, Henrik; Quist, Per; Schreiber, Mads Peter. productivity, surface quality and tolerances in ultrasonic machining of ceramics. journal of materials processing technology, 1995.
[4]Thoe, T. B.; Aspinwall, D. K.; Wise, M.L.H. review on ultrasonic machining. international journal of machine tools and manufacture, 1998.
[5]Kang, Feng. a difference formulation based on the variational principle. appl. mathematics and comp. mathematics, 1965, 2.4: 238-262.
[6]Seah, K. H. W.; Wong, Y. S.; Lee, L. C. design of tool holders for ultrasonic machining using fem. journal of materials processing technology, 1993.
[7]Amin, S. G.; Ahmed, M. H. M.; Youssef, H. A. computer-aided design of acoustic horns for ultrasonic machining using finite-element analysis. journal of materials processing technology, 1995.
[8]Abdullah, Amir; Pak, Abbas. correct prediction of the vibration behavior of a high power ultrasonic transducer by fem simulation. the international journal of advanced manufacturing technology, 2008.

[9]Kuo, Kei-Lin,. ultrasonic vibrating system design and tool analysis. transactions of nonferrous metals society of china, 2009, 19: s225-s231.
[10]Naď, Milan. ultrasonic horn design for ultrasonic machining technologies.applied and computational mechanics, 2010.
[11]喻, et al. ANSYS 辅助楔形超声波聚能器的优化设计和实验研究. 声学技术, 2010.
[12]Choi, Young-Jae, et al. effect of ultrasonic vibration in grinding; horn design and experiment. international journal of precision engineering and manufacturing, 2013.
[13]吴欣, et al. 蜂窝复合材料超声辅助切割工具设计. 中国机械工程, 2015.
[14]Che,Jiangtao, et al. experimental study on horizontal ultrasonic electrical discharge machining. journal of materials processing technology, 2016.
[15]Cooley, James W.; Tukey,John W. an algorithm for the machine calculation of complex fourier series. mathematics of computation, 1965.
[16]Welch, Peter D. the use of fast fourier transform for the estimation of power spectra: a method based on time averaging over short, modified periodograms. ieee transactions on audio and electroacoustics, 1967.
[17]Lei, Yaguo; He, Zhengjia; Zi, Yanyang. application of the eemd method to rotor fault diagnosis of rotating machinery. mechanical systems and signal processing, 2009.
[18]Akiniwa, Yoshiaki; Tanaka, Keisuke; Nakatsu, Akira. evaluation of fatigue strength in very-long life regime of sncm439 steels. nippon kikai gakkai ronbunshu, a hen/transactions of the japan society of mechanical engineers, part a, 2004.
[19]林高田,超音波變幅桿設計於脂溶性成分萃取之研究,台灣科技大學碩士論文.2015.
[20]Daubechies, ingrid. the wavelet transform, time-frequency localization and signal analysis. information theory, ieee transactions on, 1990.
[21]Huang, Norden E., et al. the empirical mode decomposition and the hilbert spectrum for nonlinear and non-stationary time series analysis. in: proceedings of the royal society of london a: mathematical, physical and engineering sciences. the royal society, 1998.
[22]Malakooti, Behnam; Wang, Jun; Tandler, Evan C. a sensor-based accelerated approach for multi-attribute machinability and tool life evaluation. the international journal of production research, 1990.
[23]Rawson, F. F., High power ultrasonic resonant horns, part 1 – basic design concepts. velocity of ultrasound at 20 khz; effects of material and horn dimensions, ultrasonics int. 87 conf. proc., london, 1987.
[24]Cortes, Corinna; Vapnik, Vladimir. support-vector networks. machine learning, 1995.
[25]Cottle, Richard W. William Karush and the kkt theorem. doc. math., extra volume: optimization stories, 2012,
[26]Vapnik, Vladimir. the nature of statistical learning theory. springer science & business media, 2013.
[27]Boser, B. E.; Guyon, I. M.; Vapnik, V. N. (1992). "a training algorithm for optimal margin classifiers". proceedings of the fifth annual workshop on computational learning theory – colt '92.
[28]Jack, L. B.; Nandi, A. K. fault detection using support vector machines and artificial neural networks, augmented by genetic algorithms. mechanical systems and signal processing, 2002.
[29]Samanta, B.; al-balushi, K. R.; al-araimi, S. A. artificial neural networks and support vector machines with genetic algorithm for bearing fault detection. engineering applications of artificial intelligence, 2003,
[30]Konar, P.; Chattopadhyay, P. bearing fault detection of induction motor using wavelet and support vector machines (svms). applied soft computing, 2011.
[31]Wu, Tian Yau; Chen, J. C.; Wang, C. C. characterization of gear faults in variable rotating speed using hilbert-huang transform and instantaneous dimensionless frequency normalization. mechanical systems and signal processing, 2012.
[32]Wang, Y. S., et al. an intelligent approach for engine fault diagnosis based on hilbert–huang transform and support vector machine. applied acoustics, 2014.
[33]Chang, Chih-Chung; Lin, Chih-Jen. libsvm: a library for support vector machines. acm transactions on intelligent systems and technology (tist), 2011.
[34]Huang, Norden eh. hilbert-huang transform and its applications. world scientific, 2014.

無法下載圖示 全文公開日期 2021/08/04 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE