簡易檢索 / 詳目顯示

研究生: 巫國雄
Kuo-Hsiung Wu
論文名稱: 樹狀式聯合參數估測演算法及其在通訊系統之應用
Tree Structure Joint Parameters Estimation Algorithms and Applications in Communication Systems
指導教授: 方文賢
Wen-Hsien Fang
口試委員: 賴坤財
Kuen-Tsair, Lay
陳郁堂
Yie-Tarng, Chen
胡能忠
Neng-Chung, Hu
廖弘源
Mark, Liao
呂福生
Fu-Sheng Lu
學位類別: 博士
Doctor
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 135
中文關鍵詞: 載波頻率偏移到達方位角符號時間偏移正交分頻多工存取空間多重存取多重信號分辨旋轉不變信號參數估測
外文關鍵詞: carrier frequency offset, direction of arrival, delay, orthogonal frequency division multiple access, spatial division multiple access, MUSIC, ESPRIT
相關次數: 點閱:341下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於無線網路的大量配置以及多媒體傳輸頻寬的大量需求,嚴重的干擾及大量頻寬的需求成為目前寬頻通訊主要的關切點。有鑒於此,在這篇論文,我們發展高頻譜效率的通訊系統,並利用信號的特殊結構進行參數的估測,追蹤以及信號偵測。我們提出數種低複雜度且高準確度的演算法來聯合估測及追蹤重要的無線通信通道的重要參數。

    首先,本論文的第一個論述,提出一個高頻譜效率的多使用者多輸入多輸出正交分頻多工干擾網路,接著我們開發兩個陣列天線協助的演算法以及一個信號偵測演算法。所開發演算法主要以階層式樹狀結構的方式來估測三個通道參數:頻率偏移、延遲以及方位角度選擇性。利用階層式時-空拆解技術結合了估測法與濾波器,以建立一個階層式的樹狀結構,交替估測時間及空間上的參數。另外在階層式的樹狀結構估測過程中,時間及空間上的參數可自動的配對,並無須再另外使用配對演算法。之後,基於這些估測的參數,我們進一步提出基於去除多重存取干擾以及同頻道干擾為基礎的信號偵測程序。

    本論文的第二個論述是針對交錯式正交分頻多工存取/空間多重存取通訊系統上鏈部份提出聯合頻率偏移及方位角的估測演算法。在此通訊系統中,頻率的同步以及信號的偵測益趨困難。然而,交錯式正交分頻多工係統具有頻率上的週期性,因此重複利用堆疊技巧可以產生Vandermonde 結構,並以子空間的方法輪流進行頻率偏移及方位角的估測。此外,為了加強估測準確度以及降低運算量,加入時間濾波器及波束形成濾波器漸進式分解原信號,使原本多用戶的信號逐漸變為單一用戶極少干擾的信號,進而加強估測的準確度。

    本論文的第三個論述是提出低複雜度二維方位追蹤演算法,新的演算法混合追蹤及波束形成技術將高維度的追蹤演算法拆解成三級一維度的追蹤演算法,在角度的追蹤器之間,由前一級估測的參數所建立的濾波器來對入射信號進行分群,進而加強追蹤的準確性。整體複雜度較傳統的二維追蹤演算法為低,但有較高的效能。

    此外,我們也對上述各個論述,針對不同的無線通訊環境,進行計算機模擬與效能分析,結果顯示我們所提出的參數估測及追蹤演算法確實能夠提供低複雜度極高效能的品質。


    In this thesis, we proposed several effective, yet low complexity algorithms to
    jointly estimate and track channel parameters in wireless communication systems. The investigation and contribution of the thesis include the followings:
    First, an antenna-array-assisted algorithm to mitigate the mutual interference,
    frequency acquisition and detect data in a multiuser multiple-input-multipleoutput (MIMO) orthogonal frequency division multiplexing (OFDM)interference network is proposed. The algorithm begins with the estimation of three channel parameters: frequency offsets, delays and angle selectivity. To make a good use of the array signal characteristics, these three parameters are estimated in a frequency/delay-angle-frequency/delay (FAF) tree structure, in which two frequency/delay estimations and one angle estimation are employed alternatively.
    One special feature in the FAF tree structure is that temporal filtering or spatial beamforming is invoked between the parameter estimations to decompose signals so as to enhance the estimation accuracy. Thereafter, based on these parameter estimates, a data detection procedure is developed to mitigate both multiple access interference (MAI) and co-channel interference (CCI).
    Second, an efficient algorithm for joint estimation of carrier frequency offsets (CFOs) and directions of arrival (DOAs) in interleaved orthogonal frequency division multiple access/space division multiple access (OFDMA/SDMA) uplink systems is proposed. The algorithm utilizes the signal structure by estimating the CFOs and DOAs in a hierarchical tree structure in which CFO estimation and DOA estimation are performed alternately in three stages. Moreover, to enhance the estimation accuracy and reduce the computational overhead, a temporal filtering process and a spatial beamforming process are invoked in between the CFO and DOA estimations to progressively decompose the signals into subgroups containing a single interference-mitigated signal.
    Third, we present a low complexity, yet accurate adaptive algorithm for the tracking of two-dimensional (2-D) direction of arrival (DOAs) based on a uniform rectangular array (URA). The new algorithm is a novel hybrid of tracking and beamforming processes by making use of three stages of one-dimensional (1-D) DOA tracking algorithms - in a hierarchical tree structure - to determine the two DOA components iteratively in a coarse-fine manner. In between every other 1-D DOA tracking algorithm, a complementary orthogonal beamforming process is invoked to partition the incoming signals into appropriate groups to enhance the tracking accuracy. Since the new algorithm only involves the 1-D subspacebased DOA tracking algorithm, the overall complexity is substantially less than the direct two-dimensional (2-D) extension of the existing 1-D DOA tracking algorithms, which requires an update of higher-dimensional vectors followed by a higher-dimensional eigendecomposition or a 2-D search.
    Simulations show that these proposed algorithms can provide satisfactory estimation and tracking performance in various scenarios. As a whole, these new
    algorithms strike a good balance between performance and complexity as compared
    with previous works.

    Contents 1 Introduction 1 2 Background Overview 6 2.1 Overview of wireless channel models . . . . . . . . . . . . . . . . . . 7 2.1.1 The Wireless Communication Channels . . . . . . . . . . . . 7 2.1.2 OFDM signal model . . . . . . . . . . . . . . . . . . . . . . 12 2.2 Background and Related Works . . . . . . . . . . . . . . . . . . . . 15 2.2.1 ML Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.2.2 Subspace-Based Algorithm . . . . . . . . . . . . . . . . . . . 18 2.2.3 Higher-Dimensional Subspace-Based Algorithms . . . . . . . 18 2.2.4 1-D Subspace-Based Algorithms . . . . . . . . . . . . . . . . 19 2.2.5 Parameter estimation and tracking in wireless communication systems . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3 Antenna-Array-Assisted Frequency Offset Estimation and Data Detection in an Uplink Multiuser MIMO-OFDM Interference Network 28 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.2 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.3 Joint Estimation of Frequency Offsets/Delays and Angle Selectivity 36 3.3.1 FAF-Correlator . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.3.2 FAF-MUSIC . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 3.4 Data Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 3.5 Simulations and Discussions . . . . . . . . . . . . . . . . . . . . . . 49 3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 4 Joint Carrier Frequency Offset and Direction of Arrival Estimation via Hierarchical ESPRIT in Interleaved OFDMA/SDMA Uplink Systems 58 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 4.2 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 4.3 Joint CFO and DOA Estimation . . . . . . . . . . . . . . . . . . . 61 4.3.1 Proposed Algorithm . . . . . . . . . . . . . . . . . . . . . . 61 4.3.2 Performance Related Issues . . . . . . . . . . . . . . . . . . 66 4.4 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 5 A Low Complexity Adaptive Algorithm for Eigenspace-Based Two- Dimensional Direction of Arrival Tracking 72 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 5.2 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 5.3 2-D NICE Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 75 5.4 Tree-Structured NICE Algorithm . . . . . . . . . . . . . . . . . . . 79 5.5 Simulations and Discussions . . . . . . . . . . . . . . . . . . . . . . 86 5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 6 Conclusions 98 6.1 Summary of Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 6.2 Future Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 REFERENCE 103 A Proof of (3.28) 115

    [1] A. Peled, and A. Ruiz, “Frequency doma in data transmission using reduced
    computational complexity algorithms ,” IEEE International Conference on
    ICASSP, vol. 5, pp. 964-967, Apr. 1980.
    [2] B. Hirosaki, “An analysis of automatic equalizers for orthogonally multiplexed
    QAM systems,” IEEE Trans. Commun., vol. 56, no. 2, pp. 73-83, Jan. 1980.
    [3] L.J. Cimini, “Analysis and simulation of a digital mobile channel using orthogonal
    frequency division multiplexing,” IEEE Trans. Commun., vol. 56,
    no. 2, pp. 665-675, Jul. 1985.
    [4] I. Kalet, “The multitone channel,” IEEE Trans. Commun., vol. 37, no. 2, pp.
    119-124, Feb. 1989.
    [5] K. Thomas and H. Lajos, “Adaptive Multicarrier Modulation: A Convenient
    Framework for Time-Frequency Processing in Wireless Communications, ”
    IEEE Trans. Broadcast., vol. 88, no. 5, pp. 611-640, May 2000.
    [6] A. Al-Dweik, R. Hamila, and M. Renfors, “Blind estimation of large carrier
    frequency offsets in wireless OFDM systems ,” IEEE Trans. Veh. Technol.,
    vol. 56, no. 2, pp. 965-968, Mar. 2007.
    [7] Y. Yao and G. B. Giannakis, “Blind carrier frequency offset estimation in
    SISO, MIMO and multiuser OFDM systems, ” IEEE Trans. Commun. Technol.,
    vol. 53, no. 1, pp. 173-183, Jan. 2005.
    [8] A. I. Bo, G. E. Jiann-hua, and W. Yong, “Symbol synchronization technique
    in COFDM systems, ” IEEE Trans. Broadcast., vol. 50, no. 1, pp. 56-62, Mar.
    2004.
    [9] B. Yang, K.B. Letaief, R.S. Cheng, and Z. Cao, “Timing recovery for OFDM
    transmission, ” IEEE J. Select. Areas Commun., vol. 18, no. 11, pp. 2278-
    2291, Nov. 2000.
    [10] B. Ai, Z. X. Yang, C. Y. Pan, J. H. Ge, Y. Wang and Z. Lu, “On the synchronizaiton
    techniques for wireless OFDM systems, ” IEEE Trans. Broadcast.,
    vol. 52, no. 2, pp. 236-244, Jun. 2006.
    [11] M. P. Clark, and L. L. Scharf, “Two-dimensional modal analysis based on
    maximum likelihood,” IEEE Trans. Signal Processing, vol. 42, pp. 1443-52,
    Jun. 1994.
    [12] A. L. Swindlehurst, “Time delay and spatial signature estimation using known
    asynchronous signals,” IEEE Trans. Signal Processing, vol. 46, pp. 449-461,
    Feb. 1998.
    [13] J. Lee, C. Lee, J. Chun, and J. H. Lee, “Joint maximum-likelihood detection
    and estimation of space-time distributed multi-path parameters,” in Proc.
    IEEE Int’l Conf. Military Communications, pp. 164-168, 2000.
    [14] C. Sengupta, J. R. Cavallaro, and B. Aazhang, On multipath channel estimation
    for CDMA systems using multiple sensors,” IEEE Trans. Communications,
    vol. 49, pp. 543V553, March 2001.
    [15] K. Wang and H. Ge, “Joint estimation of time delays and DOAs for DSCDMA
    system over multipath Rayleigh fading channels,” in Pro. IEEE Int’l
    Conf. Communications, pp. 1436-1440, 2001.
    [16] W. Zhi, C. C. Ko, and F. Chin, “Multi-hop ML based delay and angle estimation
    for multipath wideband FH signals,” in Proc. IEEE Vehicular Technology
    Conf., pp. 157-161, 2004.
    [17] Q. Bao, C. C. Ko, and W. Zhi, “DOA estimation under unknown mutual
    coupling and multipath,” IEEE Trans. Aerospace and Electronic Systems,
    vol. 41 pp. 565-573, Apr. 2005.
    [18] M. D. Zoltowski and T.-S. Lee, “Beamspace ML bearing estimation incorporating
    low-angle geometry,” IEEE Trans. Aerospace and Electronic Systems,
    vol. 27, pp. 441-458, May 1991.
    [19] M. A. Zatman and H. J. Strangeways, “An efficient joint direction of arrival
    and frequency ML estimator,” in Proc. IEEE Int’l Symposium Antennas and
    Propagations, pp. 431-434, 1995.
    [20] F. Atheley, “Asymptotically decoupled angle-frequency estimation with sensor
    arrays,” in Proc. IEEE Signals, Systems, and Computers, pp. 1098-1102, 1999.
    [21] K. BECKER, “Passive localization of frequency-agile radars from angle and
    frequency measurements,” IEEE Trans. Aerospace and Electronic Systems,
    vol. 35, pp. 1129-1144, Oct. 1999.
    [22] Y. Ogawa, N. Hamaguchi, K. Ohshima, and K. Itoh, “High-resolution analysis
    of indoor multipath propagation structure,” IEICE Trans. Communications,
    E78B, pp. 1450-1457, Nov. 1995.
    [23] M. C. Vanderveen, C. B. Papadias and A. Paulraj, “Joint angle and delay
    estimation (JADE) for multipath signals arriving at an antenna array,” IEEE
    Communications Letters, vol. 1, pp. 12-14, Jan. 1997.
    [24] J. Picheral and U. Spagnolini, “Parametric estimation of space-time channels
    with spatially correlated noise by JADE-ESPRIT,” in Pro. IEEE Int’l
    Symposium Signal Processing and Its Applications, pp. 415-418, 2003.
    [25] M. A. Hernandez, L. Genis, and R. Calders, “Subspace based estimation of
    parameters and linear space-time multiuser detection for WCDMA systems,”
    in Proc. IEEE Symposium Spread Spectrum Technology and Application, pp.
    249-253, Sept. 2000.
    [26] M. Chenu-Tournier, P. Chevalier, and J.-P. Barbot, “A parametric spatiotemporal
    channel estimation technique for FDD UMTS uplink,” in Proc.
    IEEE Sensor Array and Multichannel Signal Processing Workshop, pp. 12
    -16, 2000.
    [27] Z. Gu, E. Gunawan, and Z. Yu, “Joint spatiotemporal parameter estimation
    for DS-CDMA system in fast fading multipath channel,” in Proc. IEEE
    Vehicular Technology Conf., pp. 28-32, 2001.
    [28] S. Wang, J. Caffery, and X. Zhou, “Analysis of a joint space-time DOA/FOA
    estimator using MUSIC,” in Proc. IEEE Int’l Symposium Personal, Indoor
    and Mobile Radio Communications, pp. B138-B142, 2001.
    [29] A. J. van der Veen, M. C. Vanderveen, and A. Paulraj, “Joint angle and delay
    estimation (JADE) using shift-invariance techniques,” IEEE Signal Processing
    Letters, vol. 4, pp. 142-145, May 1997.
    [30] A. J. van der Veen, M. C. Vanderveen, and A. Paulraj, “Joint angle and delay
    estimation (JADE) using shift-invariance properties,” IEEE Trans. Signal
    Processing, vol. 46, pp. 405-418, Feb. 1998.
    [31] M. C. Vanderveen, A. J. van der Veen, and A. Paulraj, “Estimation of multipath
    parameters in wireless communications,” IEEE Trans. Signal Processing,
    vol. 46, pp. 682-690, Mar. 1998.
    [32] Y.-F. Chen and M. D. Zoltowski, “Joint angle and delay estimation for DSCDMA
    with application to reduced dimension space-time RAKE receivers
    ,” in Proc. IEEE Int’l Conf. Acoustics, Speech, and Signal Processing, pp.
    2933-2936, 1999.
    [33] J. J. Blanz, A. Papathanassiou, M. Haardt, I. Furio, and P. W. Baier, “Smart
    antennas for combined DOA and joint channel estimation in time-Slotted
    CDMA mobile radio system with joint-detection,” IEEE Trans. Vehicular
    Technology, vol. 49, pp. 293-306, Mar. 2000.
    [34] Y.-H. Chen and C.-H. Chen, “Direction-of-arrival and frequency estimations
    for narrowband sources using two single rotation invariance algorithms with
    the marked subspace,” IEE Proc. Radar Signal Processing, vol. 139, pp. 297-
    300, 1992.
    [35] L. Ge, T. Chen, and X. Huang, “Simultaneous frequency and direction estimation
    from parallel-array data,” IEE Proc. Radar, Sonar Navig., vol. 142,
    pp. 6-10, 1995.
    [36] M. Haardt and J. A. Nossek, “3-D unitary ESPRIT for joint 2-D angle and
    carrier estimation,” in Proc. IEEE Int’l Conf. Acoustics, Speech, and Signal
    Processing, pp. 255-258, 1997.
    [37] L. Wang and T.-Q. Chen, “Frequency and DOA estimation of LTF in fractional
    Fourier domain,” in Proc. IEEE Int’l Conf. Comnunications and Circuits,
    pp. 1029-1033, 2002.
    [38] A. N. Lemma, A.-J. van der Veen, and E. F. Deprettere, “Analysis of joint
    angle-frequency estimation using ESPRIT,” IEEE Trans. Signal Processing,
    vol. 51, pp. 1264-1283, May 2003.
    [39] Y.-Y. Wang, J.-T. Chen, and W.-H. Fang, “TST-MUSIC for joint DOA-delay
    estimation,” IEEE Trans. Signal Processing, vol. 46, pp. 721 -729, Apr. 2001.
    [40] Y.-Y. Wang, J.-T. Chen, and W.-H. Fang, “Joint estimation of the DOA and
    delay based on the TST-ESPRIT in a wireless channel,” in Proc. IEEE Signal
    Processing Workshop on Signal Processing Advances in Wireless Communications,
    Taipei, Taiwan, pp. 302-305, 2001.
    [41] Y.-Y. Wang, J.-T. Chen, and W.-H. Fang, “A one-dimensional tree-structure
    based algorithm for DOA-delay joint estimation,” in Chapter 7 of Advances
    in Direction of Arrival Estimation,, S. Chandran ed., 2006.
    [42] B. Ottersten, M. Viberg, and T. Kailath, “Analysis of subspace fitting and
    ML techniques for parameter estimation from sensor array data,” IEEE Trans.
    Signal Processing, vol. 40, pp. 590-600, March 1992.
    [43] S. M. Kay, Fundamentals of Statistical Signal Processing: Estimation Theory.
    Prentice-Hall, 1993.
    [44] B. H. Fleury, M. Tschudin, R. Heddergott, D. Dahlhaus, and K. I. Pedersen,
    “Channel parameter estimation in mobile radio environments using the SAGE
    algorithm,” IEEE Journal on Selected Areas in Communications, vol. 17, pp.
    434-450, March 1999.
    [45] R. O. Schmidt, Multiple Emitter Location and Signal Parameter Estimation.
    Ph. D. Thesis, Stanford University, Stanford, CA., 1981.
    [46] R. Roy and T. Kailath, “ESPRIT-Estimation of signal parameters via rotational
    invariance techniques,” IEEE Tran. Acoustics, Speech, and Signal
    Processing, vol. 37, pp. 984-995, July 1989.
    [47] A. J. Barabell, “Improving the resolution performance of eigenstructure-based
    direction-finding algorithms,” in Proc. IEEE Int’l Conf. Acoustics, Speech,
    and Signal Processing, pp. 336-339, 1983.
    [48] M. Pesavento, A. B. Gershman, and M. Haardt, “Unitary root-MUSIC with a
    real-valued eigendecomposition: A theoretical and experimental performance
    study,” IEEE Trans. Signal Process., vol. 48, pp. 1306-1314, May 2000.
    [49] L. C. Godara, “Applications of antenna arrays to mobile communications,
    Part II: Beamforming and direction-of-arrival consideration,” Proc. of the
    IEEE, Vol. 85, pp. 1195-1245, Aug. 1997.
    [50] M. Eric, M. L. Dukic, and M. Obradovic, “Frequency hopping signal separation
    by spatio-frequency analysis based on the MUSIC method,” in Proc.
    IEEE Int’l Symposium Spread Spectrum Techniques and Applications, pp. 78
    - 82, 2000.
    [51] Special Issue on Time Delay Estimation, IEEE Trans. Signal Processing, vol.
    29, pp. 461 -623, Jun. 1981.
    [52] P. Hande, L. Tong, and A. Swami, “Multipath delay estimation for frequency
    hopping systems,” Journal of VLSI Signal Processing, vol. 30, pp. 163-178,
    2002.
    [53] A. J. van der Veen, P. B. Ober, and E. F. Deprettere, “Azimuth and elevation
    computation in high resolution DOA estimation,” IEEE Trans. Signal
    Processing, vol. 40, pp. 1828-1832, July 1992.
    [54] R. Peterson, R. Ziemer, and D. Borth, Introduction to Spread-Spectrum Communication.
    Prentice-Hall, 1995.
    [55] D. J. Torrierri, “Frequency hopping and future army wireless communications,”
    in Proc. IEEE Int’l Conf. Military Communication, pp. IV-592-595,
    2003.
    [56] G. Su and M. Morf, “Modal decomposition signal subspace algorithms,” IEEE
    Trans. Acoustics Speech, Signal Processing, vol. 34, pp. 585-602, June 1986.
    [57] I. Ziskind and M. Wax, “Maximum likelihood localization of multiple sources
    by alternating projection,” IEEE Trans. Acoustics Speech, Signal Processing,
    vol. 36, pp. 1553-1560, Oct. 1988.
    [58] R. D. DeGroat, E. M. Dowling, and D. A. Linebarger, “The constrained
    MUSIC problem,” IEEE Trans. Signal Processing, vol. 41, pp. 1445-1449,
    March 1993.
    [59] P. Stoica and T. Soderstrom, and D. A. Linebarger, “On the constrained
    MUSIC technique,” IEEE Trans. Signal Processing, vol. 41, pp. 1445-1449,
    Mov. 1993.
    [60] H. L. Van Trees, Optimun Array Processing. Wiley-Interscience, 2002.
    [61] S. R. Saunders, Antennas and Propagation for Wireless Communication Systems.
    Wiley-Interscience, 1999.
    [62] R.-W. Chang, “Synthesis of band-limited orthogonal signals for multichannel
    data transmission,” Bell Syst. Tech. Journal, vol. 45, pp. 1775-1796, Dec.
    1966.
    [63] R. Van Nee and R. Prasad, OFDM for wireless multimedia communications.
    Artech-House, 2000.
    [64] Timothy M. Schmidl and Donald C. Cox, “Robust frequency and timing synchronization
    for OFDM,” IEEE Trans. on Communications, vol. 45, no. 12,
    Dec. 1997.
    [65] H. Minn, M.Zeng, and V.K. Bhargave, “On timing offset estimation for
    OFDM systems,” IEEE Communications letters. vol. 4, no. 7, Jul. 2000.
    [66] H. Sampath, S. Talwar, J. Tellado and V. Erceg, “A fourth-generation MIMOOFDM
    broadband wireless system: design, performance, and field trail results,”
    IEEE Communication magazine, pp. 143-149, Sep. 2002.
    [67] IEEE Std. 802.11a-1999, Wireless LAN Medium Access Control (MAC) and
    Physical Layer (PHY) Specifications: High speed physical layer in the 5 GHz
    band.
    [68] IEEE Std. 802.g-2003, Wireless LAN Medium Access Control (MAC) and
    Physical Layer (PHY) Specifications: Further higher data rate extension in
    the 2.4 GHz band.
    [69] IEEE 802.11 WG., IEEE P802.11n/D3.0 Draft Standard for Information
    Technology-Telecommunications and information exchange between systems -
    Local and Metropolitan Networks - Specific Requirements - Part 11: Wireless
    LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications:
    Amendment 4: Enhancements for Higher Throughput. Nov. 2007.
    [70] IEEE Std 802.16-2004, IEEE Standard for Local and Metropolitan Area Networks
    Part 16: Air Inteface for Fixed Broadband Wireless Access Systems,
    Oct. 1, 2004.
    [71] R. van Nee and R. Prasad, “OFDM for wireless multimedia communications,”
    Boston, MA: Artech House, 2000.
    [72] G.J. Foschini, “Layered space-time architecture for wireless communication
    in a fading environment when using multiple antennas,” Bell Labs Tech., pp.
    41-59, Aug. 1996.
    [73] A.J. Paulraj, D.A. Gore, R.U. Nabar and H. Bolcskei, “An overview of MIMO
    communications- A key to gagabit wireless,” Proc. IEEE, pp. 198-218, Feb.
    2004.
    [74] V. Tarokh, N. Seshadri and A. R. Calderbank, “Space-time codes for high data
    rate wireless communication: Performance analysis and code construction,”
    IEEE Trans. Inform. Theory., pp. 744-765, Mar. 1998.
    [75] Y. Zhao and S.-G. Haggman, “BER analysis of OFDM communication systems
    with intercarrier interference,” in Proc. IEEE Communication Technology
    Conf., 1998.
    [76] A. Stamoulis, S.N. Diggavi and N. Al-Dhahir, “Intercarrier interference in
    MIMO OFDM,” IEEE Trans. Signal Processing, pp. 2451-2464, Oct. 2002.
    [77] P.H. Moose, “A technique for orthogonal frequency division multiplexing frequency
    offset correction,” IEEE Trans. on Comm. vol. 42, no. 10, Oct. 1994.
    [78] M. Morelli and U. Mengali, “An improved frequency offset estimator for
    OFDM applications,” IEEE Comm. Letters, vol. 3, no. 3, pp. 75-77, Mar.
    1999.
    [79] G. Ren, Y. Chang, H.-N. Zhang and H. Zhang , “An efficient frequency offset
    estimation method with a large range for wireless OFDM systems,” IEEE
    Trans. on Vehicular Technology, vol. 56, no. 4, pp. 1992-1895, Jul. 2007.
    [80] A. N. Mody and G.L. St¨uber, “Synchronization for MIMO-OFDM systems,”
    in Proc. IEEE GLOBECOM, pp. 509-513, 2001.
    [81] G.L. St¨uber, J.R. Barry, S.W. Mclaughlin, Y. Li, M.A. Ingram and T.G.
    Pratt, “Broadband MIMO-OFDM wireless communications,” IEEE Proc. vol.
    92, no. 2, pp. 271-294, Feb. 2004.
    [82] H. Liu, X.-D Wang and Z.-X Xiong, “Iterative receivers for OFDM coded
    broadband MIMO fading channels,” in Proc. IEEE Workshop on Statistical
    Signal Processing, pp. 355-358, 2003.
    [83] Y. Jiang, H. Minn, X. Gao, X. You and Y. Li, “Frequency offset estimation
    and training sequence design for MIMO OFDM,” IEEE Trans. on Wireless
    Comm., vol. 7, no. 4, pp. 1244-1254, Apr. 2008.
    [84] M.-F. Oh, X. Ma, G.B. Giannakis and D.-J. Park, “Hopping pilots for estimation
    of frequency-offset and multiantenna channels in MIMO-OFDM,” in
    Proc. IEEE GLOBECOM, pp. 1084-1088, 2003.
    [85] X. Dai and S.-H Zhang, “Pilot-assisted carrier frequency offset estimation for
    MIMO-OFDM systems,” in Proc. IEEE Computer and Information Technology
    Conf., pp. 681-686, 2004 .
    [86] A. Saemi, V. Meghdadi, J.-P. Cances and M.R. Zahabi, “Joint ML timefrequency
    synchronization and channel estimation algorithm for MIMOOFDM
    systems,” IET Circuits, Devices and Systems, vol. 2, no. 1, pp. 103-
    111, Feb. 2008.
    [87] K.-W. Park and Y.-S. Cho, “A MIMO-OFDM technique for high-speed mobile
    channels,” IEEE Trans. Commn., pp. 604-606, Jul. 2005.
    [88] J. Li, J. Conan and S. Pierre, “Mobile terminal location for MIMO communication
    systems,” IEEE Trans. Antennas and Propagation, vol. 55, pp.
    2417-2420, Aug. 2007.
    [89] R.-T. Juang, D.-B. Lin and H.-P. Lin, “Hybrid SADOA/TDOA mobile positioning
    for cellular networks, ” IET Communications, vol. 1, pp. 282-287,
    Apr. 2007.
    [90] TIA/US, The cdma2000 ITU-R RTT Candidate Submission, June 1998.
    [91] CATT/China, TD-SCDMA Radio Transmission Technology for IMT-2000,
    June 1998.
    [92] C.-K. Wen, Y.-Y. Wang and J.-T. Chen, “A low-complexity space-time
    OFDM multiuser system,” IEEE Trans. on Wireless Comm., vol. 4, pp.
    998-1007, Mar. 2005.
    [93] Q.H. Spencer, B.D. Jeffs, M.A. Jensen and A.L. Swindlehurst, “Modeling
    the statistical time and angle of arrival characteristic of an indoor multipath
    channel,” IEEE J. Select. Areas Commun., vol. 18, pp. 347-360, Mar. 2000.
    [94] G.H. Golub and C.F. Van Loan, Matrix Computations. 3rd Ed., Johns Hopkins,
    1996.
    [95] K.-H. Wu, W.-H. Fang and J.-T. Chen, “Joint DOA-frequency offset estimation
    and data detection in uplink MIMO-OFDM networks with SDMA techniques,”
    in Proc. IEEE Vehicular Technology Conf.-spring, pp. 2977-2981,
    2006.
    [96] Y.-Y. Wang, J.-T. Chen and W.-H. Fang, “TST-MUSIC for joint DOA-delay
    estimation,” IEEE Trans. Signal Processing, pp. 721-729, 2001.
    [97] J.-D. Lin, W.-H. Fang, Y.-Y. Wang and J.-T. Chen, “FSF-MUSIC for joint
    DOA and frequency estimation and its performance,” IEEE Trans. Signal
    Processing, pp. 4529-4542, 2006.
    [98] C.-H. Lin, W.-H. Fang, K.-H. Wu and J.-D. Lin, “Fast algorithm for joint
    azimuth and elevation angles, and frequency estimation via hierarchical spacetime
    decomposition,” in Proc. IEEE Int’l Conf. Acoustics, Speech and Signal
    Processing, pp. 1061-1064, 2007.
    [99] R.O. Schmidt, “Multiple emitter location and signal parameter estimation,”
    in Proc. RADC Spectral Estimation Workshop, pp. 243-258, 1979.
    [100] H.L. Van Trees, Optimum Array Processing. Wiely-Interscience, 2002.
    [101] R. Roy, A. Paulraj and T. Kailath, “ESPRIT-A subspace rotational approach
    to estimation of parameters of cisoids in noise,” IEEE Trans. Acoust.,
    Speech, Signal Processing, vol. ASSP-34, pp. 1340-1342, Oct. 1986.
    [102] S.-Y.Wang, C.-C. Huang, and C.-C. Quek, “A two-dimensional rake receiver
    architecture with an FFT-based matched filtering,” IEEE Trans. Vehicular
    Technology, pp. 224-234, 2005.
    [103] C.-F. Tsai, C.-J. Chang, F.-C. Ren, and C.-M Yen, “Adaptive radio resource
    allocation for downlink OFDMA/SDMA systems with multimedia traffic,
    ”IEEE Trans. Wireless Commun., vol. 7, no. 5, pp. 1734-1743, May 2008.
    [104] S. Geng, J. Kivinen, X. Zhao, and P. Vainikainen, “Millimeter-wave propagation
    channel characterization for short-range wireless communications,”
    IEEE Trans. Vehicular Technology., vol. 58, no. 1, pp. 3-13, Jan. 2009.
    [105] I. Koutsopoulos and L. Tassiulas, “The impact of space division multiplexing
    on resource allocation: a unified treatment of TDMA, OFDMA and CDMA,”
    IEEE Trans. Commun., vol. 56, no. 2, pp. 4529-4542, Feb. 2008.
    [106] J.-N. Lin, H.-Y. Chen, T.-C. Wei, and S.-J. Jou, “Symbol and carrier frequency
    offset synchronization for IEEE802.16e,” in Proc. IEEE International
    Symposium on Circuits and Systems, pp. 3082-3085, May 2008.
    [107] P. Sun and L. Zhang, “Low complexity pilot aided frequency synchronization
    for OFDMA uplink transmission, ”IEEE Trans. Wireless Commun., vol. 8,
    no. 7, pp. 3758-3769, July 2009.
    [108] M.-O. Pun, M. Morelli, and C.-C. Jay Kuo, “Maximum-likelihood synchronization
    and channel estimation for OFDMA uplink transmissions,”IEEE
    Trans. Commun., vol. 54, no. 4, pp. 726-736, Apr. 2006.
    [109] K.-W. Yip, Y.-C. Wu, and T.-S. Ng, “Timing synchronization analysis for
    IEEE 802.11a wireless LAN in frequency-nonselective Rician fading environments,”
    IEEE Trans. Wireless Communication, vol. 3, no. 2, pp. 387-394,
    Mar. 2004.
    [110] Z. Cao, U. Tureli, and Y.-D. Yao, “Deterministic multiuser carrier frequency
    offset estimation for interleaved OFDMA uplink,” IEEE Trans. Commun.,
    vol. 52, no. 9, pp. 1585-1594, Sep. 2004.
    [111] R.O. Schmidt, “Multiple emitter location and signal parameter estimation,”
    IEEE Trans. Antennas Propagation, vol, AP-34, pp. 276-280, Mar. 1986.
    [112] J. Lee, S. Lee, K.-J. Bang, S. Cha, and D. Hong, “Carrier frequency offset
    estimation using ESPRIT for interleaved OFDMA uplink systems,” IEEE
    Trans. Vehicular Technology, vol. 56, no. 5, pp. 3227-3231, Sep. 2007.
    [113] R. Roy and T. Kailath, “ESPRIT-Estimation of signal parameters via rotational
    invariance techniques,” IEEE Trans. on Acoust., Speech, Signal Processing,
    vol. 37, no. 7, pp. 984-995, July 1989.
    [114] K. Liu, W. Hamouda and A. Youssef, “ESPRIT-based directional MAC protocol
    for mobile Ad Hoc networks,” in Proc. IEEE International Conference
    on Communications, pp. 3654-3659, June 2007.
    [115] H. L. Van Trees, Optimun Array Processing. Wiley-Interscience, 2002.
    [116] M. L. Burrows, “Two-dimensional ESPRIT with tracking for radar imaging
    and feature extraction,” IEEE Trans. on Antennas and Propagation, pp. 524-
    532, Feb. 2004.
    [117] L. Schumacher and B. Raghothaman, “Closed-form expressions for the correlation
    cofficient of directive antennas impinged by a multimodeal truncated
    Lapacian PAS,” IEEE Trans. Wireless Communication., vol. 4, no. 4, pp.
    1351-1359, July 2005.
    [118] C. R. Berger, B. Demissie, Jorg Heckenback, and P. Willeet, “Signal processing
    for passive radar using OFDM waveforms,” IEEE Trans. Selected Topics
    in Signal Processing, vol. 4, no. 1, pp. 226-238, Jan. 2010.
    [119] G.H. Golub and C.F. Van Loan, Matrix Computations. 3rd Ed., Johns Hopkins,
    1996.
    [120] M. Wax and T. Kailath, “Detection of signals by information theoretic criteria,”
    IEEE Trans. on Acoust., Speech, Signal Processing, vo.33, no. 2, pp.
    387-392, Apr. 1985.
    [121] Y. Bresler and A. Macovski, “On the number of signals resolvable by a
    uniform linear array,” IEEE Trans. on Acoust., Speech, Signal Processing,
    vo.34, no. 6, pp. 1361-1375, Apr. 1986.
    [122] M. D. Zoltowski, M. Haardt, and C. P. Mathews, “Closed-form 2-D angle
    estimation with rectangular arrays in element space or beamspace via unitary
    ESPRIT,” IEEE Trans. on Signal Processing, pp. 316-328, Feb., 1996.
    [123] H. L. Van Trees, Optimum Array Processing. Wiley-Interscience, 2002.
    [124] J.J. van de Beek, M. Sandell and P. O. Borjesson, “ML estimation of time
    and frequency offset in OFDM systems,” IEEE Trans. on Signal Processing,
    vol. 45, pp. 1800-1805, July 1997.
    [125] K.-W. Park, E.-S. Choi, K.-H. Chang and Y.-S. Cho, “A MIMO-OFDM technique
    for high-speed mobile channels,” in Proc. IEEE Vehicular Technology
    Conf., pp. 980-983, 2003.
    [126] M. Moreli, “Timing and frequency synchronization for the uplink of an
    OFDMA system,” IEEE Trans. Commun., vol. 52 pp. 296-306, Feb. 2004.
    [127] M.-M. Pun, M. Moreli and C.-C. Kuo, “Maximum-likelihood synchronization
    and channel estimation for OFDMA uplink transmissions, ” IEEE Comm.
    Letters, vol. 54, pp. 726-736, Apr. 2006.
    [128] A.J. Paulraj, D.A. Gore, R.U. Nabar and H. Bolcskei, “An overview of
    MIMO communications - A key to gagabit wireless,” IEEE Proc., vol. 92,
    no. 2, pp. 198-216, Feb. 2004.
    [129] S. Sekizawa, “Estimation of arrival directions using MUSIC algorithm with
    a plannar array,” in Proc. IEEE Universal Personal Communications Conf.,
    pp. 555-559, 1998.
    [130] W.D. Blair, B.J. Slocumb, G.C. Brown and A.H. Register, “Tracking closelyspaced,
    possibly unresolved, rayleigh targets:idealized resolution,” in Proc.
    IEEE Aerospace Conf., pp. 1543-1550, 2002.
    [131] J.-C. Chen, K. Yao, and R. E. Hudson, “Source localization and beamforming,”
    in IEEE Signal Processing Mag., pp. 30-39, 2002.
    [132] A. Kuchar, M. Tangemann and E. Bonek, “A real-time DOA-based smart
    antenna processor,” IEEE Trans. on Vehicular Technology, pp. 1279-1293,
    2002.
    [133] H. L. Van Trees, Optimun Array Processing. Wiley-Interscience, 2002.
    [134] R. O. Schmidt, “Multiple emitter location and signal parameter estimation,”
    in Proc. RADC Spectral Estimation Workshop, pp. 243-258. Rome, NY. 1979.
    [135] R. Roy and T. Kailath, “ESPRIT-Estimation of signal parameters via rotational
    invariance techniques,” IEEE Tran. on Acoustics, Speech, and Signal
    Processing, vol. 37, pp. 984-995, July 1989.
    [136] J.-F Yang and M. Kaveh, “Adaptive eigensubspace algorithms for direction
    or frequency estimation and tracking,” IEEE Trans. on Acoustics, Speech,
    and Signal Processing, pp. 241-251, Feb., 1988.
    [137] A. Ericksson, P. Stoica, and T. Soderstrom, “On-line subspace algorithms for
    tracking moving sources,” IEEE Trans. on Signal Processing, pp. 2319-2329,
    Sep., 1994.
    [138] B. Yang, “Projection approximation subspace tracking,” IEEE Trans. on
    Signal Processing, pp. 95-107, Sept. 1995.
    [139] Y.-F. Miao and Y.-B. Hua, “Fast subspace tracking and neural network
    learning by a novel information criterion,” IEEE Trans. Signal Processing,
    pp. 1967-1979, July, 1998.
    [140] J. Xin and A. Sano, “Efficient subspace-based algorithm for adaptive bearing
    estimation and tracking,” IEEE Trans. on Signal Processing,, vol. 53, no.12,
    Dec. 2005, pp. 4485-4505.
    [141] S. Sekizawa, “Estimation of arrival directions using MUSIC algorithm with
    a planar array,” in Proc. IEEE Universal Personal Communications, pp. 555-
    559, Italy, 1998 .
    [142] M. Pesavento and J.F. B¨ohme, “Eigenstructure-based azimuth and elevation
    estimation in sparse uniform rectangular arrays,” in Proc. IEEE Sensor Array
    and Multichannel Signal Processing Conf., pp. 327-331, Aug. 2002.
    [143] M. D. Zoltowski, M. Haardt, and C. P. Mathews, “Closed-form 2-D angle
    estimation with rectangular arrays in element space or beamspace via unitary
    ESPRIT,” IEEE Trans. on Signal Processing, pp. 316-328, Feb., 1996.
    [144] P. Bas Ober, E.F. Deprettere and A.J. van der Veen, “Efficient methods
    to compute azimuth and elevation in high resolution DOA estimation,” in
    Proc. International Conference on Acoustics, Speech and Signal Processing,
    pp. 3349-3352, 1991.
    [145] A. Swindlehurst, T. Kailath, “Azimuth/Elevation direction finding using
    regular array geometry,” IEEE Tran. on Aerospace and Electronic Systems,
    vol. 29, pp. 145-156, 1993.
    [146] M. Haardt and J. A. Nossek, “Unitary ESPRIT: How to obtain increased
    estimation accuracy with a reduced computational burden,” IEEE Trans. on
    Signal Processing, pp. 1232-1242, May, 1995.
    [147] Y.-Y. Wang, J.-T. Chen, and W.-H. Fang, “TST-MUSIC for joint DOAdelay
    estimation,” IEEE Trans. on Signal Processing, vol. 46, pp. 721-729,
    Apr. 2001.
    [148] J.-D. Lin, W.-H. Fang, Y.-Y. Wang, and J.-T. Chen, “FSF MUSIC for joint
    DOA and frequency estimation and its performance analysis,” IEEE Trans.
    on Signal Processing, vol. 54, no. 12, pp. 4529-4542, Dec. 2006.
    [149] K.-S.Wu, W.-H. Fang, H.-J. Chen, and J.-T. Chen, “A low complexity adaptive
    algorithm for tracking of eigenspace-based two-dimensional direction of
    arrival,” in Proc. IEEE Wireless Communications and Applied Computational
    Electromagnetics Conf., pp.349-352, Apr. 2005.
    [150] T. S. Rappaport, Wireless Communications: Principles and Practice. Prentice
    Hall, 1996.
    [151] G. H. Golub and C. F. Van Loan, Matrix Computations. 3rd ed. Johns Hopkins
    University Press, 1996
    [152] S. Haykin, Adaptive Filter Theory. Prentice-Hall, 2002.
    [153] M. Wax and T. Kailath, “Detection of signals by information theoretic criteria,”
    IEEE Trans. on Acoust., Speech, Signal Processing, pp. 387-392, Apr.,
    1985.

    QR CODE