簡易檢索 / 詳目顯示

研究生: 林仁得
Jen-Der Lin
論文名稱: 在無線通訊系統中基於階層式時-空拆解技術的多重參數快速估測演算法
Fast Algorithms for Joint Parameter Estimation Based on Hierarchical Space-Time Decomposition Technique in Wireless Communication Systems
指導教授: 方文賢
Wen-Hsien Fang
口試委員: 賴坤財
Kuen-Tsair Lay
鄭瑞光
Ray-Guang cheng
王煥宗
Huan-Chun Wang
洪賢昇
Hsien-Sen Hung
李大嵩
Ta-Sung Lee
廖弘源
Hong-Yuan Liao
學位類別: 博士
Doctor
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 英文
論文頁數: 150
中文關鍵詞: 入射角多重信號分辨演算法樹狀結構分碼多工跳頻效能分析
外文關鍵詞: DOA, MUSIC, tree structure, CDMA, FH, performance analysis
相關次數: 點閱:267下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文首先針對無線通訊系統建立一個一般型式的時空訊號模型。然後基於這個時空訊號模型發展一個低複雜性、高準確度的階層式時-空拆解技術的多重參數演算法。該階層式時-空拆解技術結合了估測法與濾波器,以建立一個階層式的樹狀結構,交替估測時間及空間上的參數。在空間與時間估測器之間,由前一級估測的參數所建立的濾波器來對入射信號進行分群,進而加強估測的準確性。因此本論文所提出之方法可解析出在空間中或在時域中非常靠近之信號。另外在階層式的樹狀結構估測過程中,時間及空間上的參數可自動的配對,並無須再另外使用配對演算法。

    接著我們利用階層式時-空拆解技術發展一個在無線通訊系統中同時估測方位角及載波頻率的多重信號分辨演算法,稱為頻-時-頻多重信號分辨演算法。該演算法結合了時域濾除及空間之波束形成技術配合二次頻-多重信號分辨演算法及一次時-多重信號分辨演算法將被接收信號分群,隔離,進而估測及配對被接收信號之方位角及載波頻率。此外為了得到更強健的時域濾除及空間之波束形成技術,本論文提出由線性條件式最小雜訊準則所決定的限制型時域濾除及限制型空間之波束形成技術。同時一種低複雜度的估測法-以平方根的空/時間濾波器在本論文中亦被提出,以降低整體的計算量。

    最後,本論文將階層式時-空拆解技術推廣到分碼多工和跳頻系統上做方位角及延遲時間的估測。對於分碼多工系統而言,本論文先對接收訊號做拆解,使其能適用於階層式樹狀結構演算法。至於跳頻系統,由於它的時間特徵函數是一個對角矩陣,因此無法形成時域濾波器。本論文提出利用堆疊技巧及奇異值分解的方法來解決這個問題。


    In this dissertation, a general space-time signal model is first built up and then based on which a low complexity, yet high accuracy hierarchical space-time decomposition (HSTD) technique is developed to jointly estimate the temporal and spatial parameters. The HSTD technique, which is a novel twist of parameter estimation and filtering processes, employs lower dimensional subspace-based algorithms - in a hierarchical tree structure - to estimate the temporal and spatial parameters alternatively. In between every other subspace-based algorithm, a temporal filtering process or a spatial beamforming process, implemented based on the previous estimated parameters, is invoked to partition the incoming rays into appropriate groups and to annihilate the additive noise to enhance the estimation accuracy, so that the incoming rays can be well resolved even with very close temporal parameters or spatial parameters. In addition, since the HSTD technique proceeds the parameter estimation in the tree structure, the estimated spatio-temporal parameters are automatically paired off.

    Then, based on the HSTD technique, a frequency-space-frequency MUltiple SIgnal
    Classification (FSF MUSIC) algorithm is presented to estimate the DOAs and
    carrier frequencies of the impinging rays, in which two one-dimensional (1-D) frequency (F)-MUSIC and one 1-D space (S)-MUSIC along with filering/beamforming
    processes are employed to estimate the DOA and frequencies alternatively in a coarsefine manner. Some implementation related issues such as robustness and parsimonious computations are also addressed. Statistical analyses of the undesired residues propagating between the MUSICs and the mean square errors (MSEs) of the parameter estimates, based on an illustrative three-ray scenario, are derived to provide further insights into the proposed approach.

    Also, the HSTD technique is applied to jointly estimate the DOAs and path delays in CDMA and FH systems. For CDMA systems, the received data are first analyzed and then a hierarchically tree-structured algorithm is developed to jointly estimate these two parameters. For FH systems, two algorithms are proposed, both of which begin with the estimation of the DOAs, following by a spatial beamforming process and the delay estimation by utilizing the filtered data in each hop. Thereafter, after partitioning the data through a temporal filtering process, two new approaches are addressed to achieve finer estimates of the DOAs.

    Simulations are also provided to verify the proposed algorithms and the developed analytic expressions in various scenarios. As a whole, these new algorithms strike a good balance between performance and complexity as compared with previous works.

    1 INTRODUCTION 1 1.1 Review of Previous Works . . . . . . . . . . . . . . . . . . . . . . . 2 1.1.1 ML Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.1.2 Subspace-Based Algorithm . . . . . . . . . . . . . . . . . . . . . .5 1.2 Overview of the Dissertation . . . . . . . . . . . . . . . . . . . . . 8 1.2.1 Rationale of Hierarchical Space-Time Decomposition . . . . . . .....9 1.2.2 Outline of the Dissertation . . . . . . . . . . . . . . . . . . . 11 2 SPACE-TIME CHANNELS AND PARAMETRIC DATA MODELS ...........................14 2.1 The Wireless Communication Channels . . . . . . . . . . . . . . . . . 14 2.1.1 Multiplicative Noise . . . . . . . . . . . . . . . . . . . . . . . 16 2.1.2 Data Model in Temporal Domain . . . . . . . . . . . .... . . . . . 17 2.1.3 Antenna Array . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.2 Space-Time Signal Model . . . . . . . . . . . . . . . . . . . . . .. . 21 2.2.1 System Model for DOA and Carrier Frequency Estimation in General Communication Systems . . . . . . . . . . . . . . . . ............ 23 2.2.2 System Model for DOA and Delay Estimation in DS/ CDMA Systems . . 24 2.2.3 System Model for DOA and Delay Estimation in FH Systems .......... 26 2.2.4 System Model for Azimuth, Elevation, and Frequency Estimation .....27 2.2.5 System Model for DOA and Frequency Offset Estimation in Uplink OFDM Networks . . . . . . . . . . . . . . . . . . . . . ...... . . 28 2.3 Hierarchical Space-Time Decomposition . . . . . . . . . . . . . . . . 29 2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 3 JOINT ANGLE AND CARRIER FREQUENCY ESTIMATION I: ALGORITHM, ROBUSTNESS AND COMPLEXITY REDUCTION .................................................34 3.1 The FSF MUSIC Algorithm . . . . . . . . . . . .. . . . . . . . . . . . 35 3.2 Robustness Consideration . . . . . . . . . . . . . . . . . . . . . . . 44 3.3 Reduction of Computational Complexity . . . .. . . . . . . . . . . . . 51 3.4 SIMULATIONS AND DISCUSSION . . . . . . ....... . . . . . . . . . . . . 55 3.5 CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 62 4 JOINT ANGLE AND CARRIER FREQUENCY ESTIMATION II: PERFORMANCE ANALYSIS ....64 4.1 MSE of the Rough Frequency Estimates . . . . . . . . . . . . . . . . . 66 4.2 Power of Residue Rays due to Imperfect Temporal Filtering . . .... . . 68 4.3 Perturbation of Eigenvectors . . . . . . . . . . . . . . . . . . . . . 71 4.4 MSE of the DOA Estimates . . . . . . . . . . . . . . . . . . . . . . . 73 4.5 MSE of the Frequency Estimates . . . . . . . . . . . . . . . . . . . . 76 4.6 SIMULATIONS AND DISCUSSION . . . . . . . . . . . . . . ....... . . . . 84 4.7 CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . 95 5 JOINT ANGLE AND DELAY ESTIMATION 96 5.1 Joint Angle and Delay Estimation in CDMA Systems . . . . . . ... . . . 97 5.1.1 Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 5.1.2 The Proposed New TST MUSIC . . . . . . . . . ........ . . . . . . . 99 5.1.3 Simulations and Discussion . . . . . . . . . . . . . . . . . . . . 103 5.2 Joint Angle and Delay Estimation in FH Systems . . . . . . . . . . . 107 5.2.1 Simulations and Discussion . . . . . . . . . . . . . . . . . . . . 118 5.3 CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 6 CONCLUSIONS .............................................................124 6.1 Summary of the Dissertation . . . . . . . . . . . . . . . . . . . . . 124 6.2 Future Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . 126 REFERENCE .................................................................128 A Relationship Between the Temporal Vector and Covariance Matrix after Filtering Processes .....................................................137 B Proof of (3.55) .........................................................139 C Proof of (3.35) .........................................................141 D Proof of (4.13) and (4.14) ..............................................143 E The Taylor Expansion of the Perturbed Eigenvectors in (4.21) ............146 F Proof of (4.34) .........................................................148

    [1] M. Y. Rhee, CDMA Cellular Mobile Communications and Network Security.
    Prentice-Hall, 1998.
    [2] G. L. Stuber, J. R. Barry, S. W. Mclaughlin, Y. Li, M. A. Ingram and T. G.
    Pratt, “Broadband MIMO-OFDM wireless communications,” Proc. of the IEEE
    vol. 92, pp. 271-294, Feb. 2004.
    [3] S. Moshavi, “Multi-user detection for DS-CDMA communications,” IEEE Communication
    Magazine, pp. 124-136, Oct. 1996.
    [4] S. Verdu, Multi-User Detection. Prentice-Hall, 1998.
    [5] X. Wang and H. V. Poor, “Space-time multiuser detection in multipath CDMA
    channels,” IEEE Trans. Signal Processing, vol. 47, pp. 2356 -2374, Sept. 1999.
    [6] C.-H. Tsai, W.-H. Fang, and J.-D. Lin,“Hybrid multi-user detection with dynamic
    mapping functions,” in Proc. Int’l Symposium Communication, Tainan,
    Taiwan, 2001.
    [7] J.-T. Chen, A. Paulraj, and U. Reddy, “Multi-channel MLSE equalizer for GSM
    using a parametric channel model,” IEEE Trans. Communications, pp. 53-63,
    Jan. 1997.
    [8] Y. Kamiya and O. Besson, “Interference rejection for frequency-hopping communication
    system using a constant power algorithm,” IEEE Trans. Communications,
    vol. 51, pp. 1627-633, 2003.
    [9] S. Anderson, M. Millnert, M. Viberg, and B. Wahlberg, “An adaptive array for
    mobile communication systems,” IEEE Trans. Vehicular Technology, vol. 40, pp.
    230-236, Feb. 1991.
    [10] J. H. Winters, J. Salz, and R. D. Gitlin, “The impact of antenna diversity on
    the capacity of wireless communication systems,” IEEE Trans. Communications,
    vol. 42, pp. 1740-1751, Apr. 1994.
    [11] A. Klouche-Djedid, and M. Fujita, “Adaptive array sensor processing applications
    for mobile telephone communications,” IEEE Trans. Vehicular Technology, vol.
    45, pp. 405-416, Aug. 1996.
    [12] B. Pattan, Robust Modulation Methods & Smart Antennas in Wireless Communications.
    Prentice-Hall, 2000.
    [13] M. P. Clark, and L. L. Scharf, “Two-dimensional modal analysis based on maximum
    likelihood,” IEEE Trans. Signal Processing, vol. 42, pp. 1443-52, Jun. 1994.
    [14] A. L. Swindlehurst, “Time delay and spatial signature estimation using known
    asynchronous signals,” IEEE Trans. Signal Processing, vol. 46, pp. 449-461, Feb.
    1998.
    [15] J. Lee, C. Lee, J. Chun, and J. H. Lee, “Joint maximum-likelihood detection and
    estimation of space-time distributed multi-path parameters,” in Proc. IEEE Int’l
    Conf. Military Communications, pp. 164-168, 2000.
    [16] C. Sengupta, J. R. Cavallaro, and B. Aazhang, On multipath channel estimation
    for CDMA systems using multiple sensors,” IEEE Trans. Communications, vol.
    49, pp. 543V553, March 2001.
    [17] K. Wang and H. Ge, “Joint estimation of time delays and DOAs for DS-CDMA
    system over multipath Rayleigh fading channels,” in Pro. IEEE Int’l Conf. Communications,
    pp. 1436-1440, 2001.
    [18] W. Zhi, C. C. Ko, and F. Chin, “Multi-hop ML based delay and angle estimation
    for multipath wideband FH signals,” in Proc. IEEE Vehicular Technology Conf.,
    pp. 157-161, 2004.
    [19] Q. Bao, C. C. Ko, and W. Zhi, “DOA estimation under unknown mutual coupling
    and multipath,” IEEE Trans. Aerospace and Electronic Systems, vol. 41 pp. 565-
    573, Apr. 2005.
    [20] M. D. Zoltowski and T.-S. Lee, “Beamspace ML bearing estimation incorporating
    low-angle geometry,” IEEE Trans. Aerospace and Electronic Systems, vol. 27, pp.
    441-458, May 1991.
    [21] M. A. Zatman and H. J. Strangeways, “An efficient joint direction of arrival
    and frequency ML estimator,” in Proc. IEEE Int’l Symposium Antennas and
    Propagations, pp. 431-434, 1995.
    [22] F. Atheley, “Asymptotically decoupled angle-frequency estimation with sensor
    arrays,” in Proc. IEEE Signals, Systems, and Computers, pp. 1098-1102, 1999.
    [23] K. BECKER, “Passive localization of frequency-agile radars from angle and frequency
    measurements,” IEEE Trans. Aerospace and Electronic Systems, vol. 35,
    pp. 1129-1144, Oct. 1999.
    [24] Y. Ogawa, N. Hamaguchi, K. Ohshima, and K. Itoh, “High-resolution analysis of
    indoor multipath propagation structure,” IEICE Trans. Communications, E78B,
    pp. 1450-1457, Nov. 1995.
    [25] M. C. Vanderveen, C. B. Papadias and A. Paulraj, “Joint angle and delay estimation
    (JADE) for multipath signals arriving at an antenna array,” IEEE Communications
    Letters, vol. 1, pp. 12-14, Jan. 1997.
    [26] J. Picheral and U. Spagnolini, “Parametric estimation of space-time channels
    with spatially correlated noise by JADE-ESPRIT,” in Pro. IEEE Int’l Symposium
    Signal Processing and Its Applications, pp. 415-418, 2003.
    [27] M. A. Hernandez, L. Genis, and R. Calders, “Subspace based estimation of parameters
    and linear space-time multiuser detection for WCDMA systems,” in
    Proc. IEEE Symposium Spread Spectrum Technology and Application, pp. 249-
    253, Sept. 2000.
    [28] M. Chenu-Tournier, P. Chevalier, and J.-P. Barbot, “A parametric spatiotemporal
    channel estimation technique for FDD UMTS uplink,” in Proc. IEEE
    Sensor Array and Multichannel Signal Processing Workshop, pp. 12 -16, 2000.
    [29] Z. Gu, E. Gunawan, and Z. Yu, “Joint spatiotemporal parameter estimation for
    DS-CDMA system in fast fading multipath channel,” in Proc. IEEE Vehicular
    Technology Conf., pp. 28-32, 2001.
    [30] S. Wang, J. Caffery, and X. Zhou, “Analysis of a joint space-time DOA/FOA
    estimator using MUSIC,” in Proc. IEEE Int’l Symposium Personal, Indoor and
    Mobile Radio Communications, pp. B138-B142, 2001.
    [31] A. J. van der Veen, M. C. Vanderveen, and A. Paulraj, “Joint angle and delay
    estimation (JADE) using shift-invariance techniques,” IEEE Signal Processing
    Letters, vol. 4, pp. 142-145, May 1997.
    [32] A. J. van der Veen, M. C. Vanderveen, and A. Paulraj, “Joint angle and delay
    estimation (JADE) using shift-invariance properties,” IEEE Trans. Signal
    Processing, vol. 46, pp. 405-418, Feb. 1998.
    [33] M. C. Vanderveen, A. J. van der Veen, and A. Paulraj, “Estimation of multipath
    parameters in wireless communications,” IEEE Trans. Signal Processing, vol. 46,
    pp. 682-690, Mar. 1998.
    [34] Y.-F. Chen and M. D. Zoltowski, “Joint angle and delay estimation for DSCDMA
    with application to reduced dimension space-time RAKE receivers ,” in
    Proc. IEEE Int’l Conf. Acoustics, Speech, and Signal Processing, pp. 2933-2936,
    1999.
    [35] J. J. Blanz, A. Papathanassiou, M. Haardt, I. Furio, and P. W. Baier, “Smart
    antennas for combined DOA and joint channel estimation in time-Slotted CDMA
    mobile radio system with joint-detection,” IEEE Trans. Vehicular Technology,
    vol. 49, pp. 293-306, Mar. 2000.
    [36] Y.-H. Chen and C.-H. Chen, “Direction-of-arrival and frequency estimations for
    narrowband sources using two single rotation invariance algorithms with the
    marked subspace,” IEE Proc. Radar Signal Processing, vol. 139, pp. 297-300,
    1992.
    [37] L. Ge, T. Chen, and X. Huang, “Simultaneous frequency and direction estimation
    from parallel-array data,” IEE Proc. Radar, Sonar Navig., vol. 142, pp. 6-10,
    1995.
    [38] M. Haardt and J. A. Nossek, “3-D unitary ESPRIT for joint 2-D angle and carrier
    estimation,” in Proc. IEEE Int’l Conf. Acoustics, Speech, and Signal Processing,
    pp. 255-258, 1997.
    [39] L. Wang and T.-Q. Chen, “Frequency and DOA estimation of LTF in fractional
    Fourier domain,” in Proc. IEEE Int’l Conf. Comnunications and Circuits, pp.
    1029-1033, 2002.
    [40] A. N. Lemma, A.-J. van der Veen, and E. F. Deprettere, “Analysis of joint anglefrequency
    estimation using ESPRIT,” IEEE Trans. Signal Processing, vol. 51,
    pp. 1264-1283, May 2003.
    [41] Y.-Y. Wang, J.-T. Chen, and W.-H. Fang, “TST-MUSIC for joint DOA-delay
    estimation,” IEEE Trans. Signal Processing, vol. 46, pp. 721 -729, Apr. 2001.
    [42] Y.-Y. Wang, J.-T. Chen, and W.-H. Fang, “Joint estimation of the DOA and
    delay based on the TST-ESPRIT in a wireless channel,” in Proc. IEEE Signal
    Processing Workshop on Signal Processing Advances in Wireless Communications,
    Taipei, Taiwan, pp. 302-305, 2001.
    [43] Y.-Y. Wang, J.-T. Chen, and W.-H. Fang, “A one-dimensional tree-structure
    based algorithm for DOA-delay joint estimation,” in Chapter 7 of Advances in
    Direction of Arrival Estimation,, S. Chandran ed., 2006.
    [44] B. Ottersten, M. Viberg, and T. Kailath, “Analysis of subspace fitting and ML
    techniques for parameter estimation from sensor array data,” IEEE Trans. Signal
    Processing, vol. 40, pp. 590-600, March 1992.
    [45] S. M. Kay, Fundamentals of Statistical Signal Processing: Estimation Theory.
    Prentice-Hall, 1993.
    [46] B. H. Fleury, M. Tschudin, R. Heddergott, D. Dahlhaus, and K. I. Pedersen,
    “Channel parameter estimation in mobile radio environments using the SAGE
    algorithm,” IEEE Journal on Selected Areas in Communications, vol. 17, pp.
    434-450, March 1999.
    [47] R. O. Schmidt, Multiple Emitter Location and Signal Parameter Estimation. Ph.
    D. Thesis, Stanford University, Stanford, CA., 1981.
    [48] R. Roy and T. Kailath, “ESPRIT-Estimation of signal parameters via rotational
    invariance techniques,” IEEE Tran. Acoustics, Speech, and Signal Processing,
    vol. 37, pp. 984-995, July 1989.
    [49] A. J. Barabell, “Improving the resolution performance of eigenstructure-based
    direction-finding algorithms,” in Proc. IEEE Int’l Conf. Acoustics, Speech, and
    Signal Processing, pp. 336-339, 1983.
    [50] M. Pesavento, A. B. Gershman, and M. Haardt, “Unitary root-MUSIC with
    a real-valued eigendecomposition: A theoretical and experimental performance
    study,” IEEE Trans. Signal Process., vol. 48, pp. 1306-1314, May 2000.
    [51] L. C. Godara, “Applications of antenna arrays to mobile communications, Part
    II: Beamforming and direction-of-arrival consideration,” Proc. of the IEEE, Vol.
    85, pp. 1195-1245, Aug. 1997.
    [52] M. Eric, M. L. Dukic, and M. Obradovic, “Frequency hopping signal separation
    by spatio-frequency analysis based on the MUSIC method,” in Proc. IEEE Int’l
    Symposium Spread Spectrum Techniques and Applications, pp. 78 - 82, 2000.
    [53] Special Issue on Time Delay Estimation, IEEE Trans. Signal Processing, vol. 29,
    pp. 461 -623, Jun. 1981.
    [54] P. Hande, L. Tong, and A. Swami, “Multipath delay estimation for frequency
    hopping systems,” Journal of VLSI Signal Processing, vol. 30, pp. 163-178, 2002.
    [55] A. J. van der Veen, P. B. Ober, and E. F. Deprettere, “Azimuth and elevation
    computation in high resolution DOA estimation,” IEEE Trans. Signal Processing,
    vol. 40, pp. 1828-1832, July 1992.
    [56] R. Peterson, R. Ziemer, and D. Borth, Introduction to Spread-Spectrum Communication.
    Prentice-Hall, 1995.
    [57] D. J. Torrierri, “Frequency hopping and future army wireless communications,”
    in Proc. IEEE Int’l Conf. Military Communication, pp. IV-592-595, 2003.
    [58] G. Su and M. Morf, “Modal decomposition signal subspace algorithms,” IEEE
    Trans. Acoustics Speech, Signal Processing, vol. 34, pp. 585-602, June 1986.
    [59] I. Ziskind and M. Wax, “Maximum likelihood localization of multiple sources by
    alternating projection,” IEEE Trans. Acoustics Speech, Signal Processing, vol.
    36, pp. 1553-1560, Oct. 1988.
    [60] R. D. DeGroat, E. M. Dowling, and D. A. Linebarger, “The constrained MUSIC
    problem,” IEEE Trans. Signal Processing, vol. 41, pp. 1445-1449, March 1993.
    [61] P. Stoica and T. Soderstrom, and D. A. Linebarger, “On the constrained MUSIC
    technique,” IEEE Trans. Signal Processing, vol. 41, pp. 1445-1449, Mov. 1993.
    [62] H. L. Van Trees, Optimun Array Processing. Wiley-Interscience, 2002.
    [63] S. R. Saunders, Antennas and Propagation for Wireless Communication Systems.
    Wiley-Interscience, 1999.
    [64] M. Ghogho, A. Swami, and B. Garel, “Performance analysis of cyclic statistics for
    the estimation of harmonics in multiplicative and additive noise,” IEEE Trans.
    Signal Processing, vol. 47, pp. 3235 -3249, Dec. 1999.
    [65] K. Feher, Wireless Digital Communications. Prentice-Hall, 1995.
    [66] European telecommunication standard institute (ETSI), rec. ETSI/GSM 05.02,
    European Telecommunication Standard Institute, 1990.
    [67] A. H. Tewfik and W. Hong, “On the application of uniform linear array bearing
    estimation techniques to uniform circular arrays,” IEEE Trans. Signal Processing,
    vol. 40, pp. 1008 -1011, April 1992.
    [68] U. Oktel and R. L. Moses, “High-resolution 3-D direction-of-arrival determination
    for urban mobile radio,” in Proc. IEEE Int’l Symposium Antennas and
    Propagations, vol. 45, pp. 672 -682, April 1997.
    [69] M. D. Zoltowski and C. P. Mathews, “Real-time frequency and 2-D angle estimation
    with sub-nyquist spatio-temporal sampling,” IEEE Trans. Signal Processing,
    vol. 42, pp. 2781 -2794, Oct. 1994.
    [70] IEEE Std. 802-11, “IEEE standard for wireless LAN medium access control
    (MAC) and physical layer (PHY) specification,” June 1997.
    [71] J. C. Haartsen, “The bluetooth radio system,” IEEE Personal Communications,
    vol. 7, pp. 28 -36, Feb. 2000.
    [72] J.-D. Lin, W.-H. Fang, Y.-Y. Wang, and J.-T. Chen, “FSF MUSIC for joint
    DOA and frequency estimation and its performance analysis,” accepted by IEEE
    Trans. Signal Processing.
    [73] M. Wax and T. Kailath, “Detection of signals by information theoretic criteria,”
    IEEE Trans. Acoustics Speech, Signal Processing, vol. 33, pp. 387-392, Apr. 1985.
    [74] J.-T. Chen, C. B. Papadias, and G. J. Foschini, “Dynamic signature assignment
    for reverse-link CDMA systems,” in Proc. IEEE Int’l Conf. Communications, pp.
    912 -916, 1999.
    [75] J.-D. Lin and W.-H. Fang, “Joint spatial-temporal channel parameter estimation
    using tree-structured MUSIC,” in Proc. IEEE Vehicular Technology Conf.,
    pp.185-189, 2002.
    [76] X. Liu, N. D, Sidiropoulos, and A. Swami, “Code-blind reception of frequency
    hopped signals over multipath fading channels,” in Proc. IEEE Int’l Conf. Acoustics,
    Speech, and Signal Processing, pp. IV-592-595, 2003.
    [77] J.-D. Lin, W.-H. Fang, and J.-T. Chen, “A low complexity algorithm for joint
    DOA and delay estimation in frequency hopping systems,” in Proc. IEEE Int’l
    Symposium Antennas and Propagations, pp. 118-121, 2005.
    [78] M. D. Zoltowski, M. Haardt, and C. P. Mathews, “Closed-form 2-D angle estimation
    with rectangular arrays in element space or beamspace via unitary ESPRIT,”
    IEEE Trans. Signal Processing, vol. 44, pp. 316-328, Feb. 1996.
    [79] Q. H. Spencer, B. D. Jeffs, M. A. Jensen, and A. L. Swindlehurst, “Modeling
    the statistical time and angle of arrival characteristic of an indoor multipath
    channel,” IEEE J. Select. Areas Communications, vol. 18, pp. 347-360, Mar.
    2000.
    [80] K.-H. Wu, W.-H. Fang, and J.-T. Chen, “Joint DOA-frequency offset estimation
    and data detection in uplink MIMO-OFDM networks with SDMA techniques,”
    in Proc. IEEE Vehicular Technology Conf., 2006.
    [81] K.-H. Wu, W.-H. Fang , H.-J. Chen and J.-T. Chen, “A low complexity adaptive
    algorithm for tracking of eigenspace-based two-dimensional directions of arrival,”
    in Proc. IEEE/ACES Int’l Conf. Wireless Communications and Applied Computational
    Electromagnetics, Honolulu, Hawaii, pp. 349-352, 2005.
    [82] J.-D. Lin, W.-H. Fang, K.-H. Wu, and J.-T. Chen, “FSF subspace-based algorithm
    for joint DOA-FOA estimation,” in Proc. IEEE Int’l Conf. Acoustics,
    Speech, and Signal Processing, pp. 157-160, 2004.
    [83] R. A. Horn and C. R. Johnson, Matrix Analysis. Cambridge, 1985.
    [84] J. C. Mosher and R. M. Leahy, “Recursive MUSIC: a framework for EEG and
    MEG source localization,” IEEE Trans. Biomedical Engineering, vol. 45, pp.
    1342-1354, Nov. 1998.
    [85] H. Saarnisaari, “Robustness of the MUSIC to errors in estimation the dimensions
    of the subspace: delay estimation in DS/SS in the presence of interference,” in
    Proc. IEEE Int’l Conf. Military Communications., pp. 851-854, Nov. 1999.
    [86] Y. Bresler and A. Macovski, “On the number of signals resolvable by a uniform
    linear array,” IEEE Trans. Acoustics Speech, Signal Processing, vol. 34, pp. 1361-
    1375, Dec. 1986.
    [87] G. H. Golub and C. F. Van Loan, Matrix Computations, 3rd ed. Johns Hopkins
    University Press, 1996
    [88] M. Haardt and J. A. Nossek, “Unitary ESPRIT: How to obtain increased estimation
    accuracy with a reduced computational burden,” IEEE Trans. Signal
    Processing, vol. 43, pp. 1232-1242, May 1995.
    [89] M. Morf and T. Kailath, “Square-root algorithms for least-squares estimation,”
    IEEE Trans. Automatic Control, vol. 20, pp. 487-497, Aug. 1975.
    [90] G. L. Besnerais and Y. Goussard, “Improved square-root of fast linear least
    squares estimation algorithms,” IEEE Trans. Signal Processing, vol. 41, pp. 1415-
    1421, March 1993.
    [91] B. D. Tapley and C. Y. Choe, “An algorithm for propagating the square-root
    covariance matrix in triangular form,” IEEE Trans. Automatic Control, pp. 122-
    123, Feb. 1976.
    [92] L. S. Shieh, S. R. Lian, and B. C. Mcinnis, “Fast and stable algorithms for computing
    the principal square root of a complex matrix,” IEEE Trans. Automatic
    Control, vol. 32, pp. 820-822, Sep. 1987.
    [93] G. G. Raleigh and T. Boros, “Joint space-time parameter estimation for wireless
    communication channels,” IEEE Trans. Signal Processing, vol. 46, pp. 1333 -
    1343, May 1998.
    [94] P. Stoica and A. Nehorai, “Performance study of conditional and unconditional
    direction-of-arrival estimation,” IEEE Trans. Acoust., Speech, Signal Processing,
    vol. 38, pp. 1783-1795, Oct. 1990.
    [95] B. Friedlander and A. J. Weiss, “Direction finding in the presence of mutual
    coupling,” in Proc. IEEE Int’l Symposium Antennas and Propagations, vol. 39,
    pp. 273-284, Mar. 1991.
    [96] K. C. Sharman, T. S. Durrani, M. Wax, and T. Kailath, “Asymptotic performance
    of eigenstructure spectral analysis method,” in Proc. IEEE Int’l Conf.
    Acoustics, Speech, and Signal Processing, San Diego, California, pp. 45.5.1-4,
    1984.
    [97] M. Kaveh and A. J. Barabell, “The statistical performance of the MUSIC and
    the minimum-norm algorithms in resolving plane waves in noise,” IEEE Trans.
    Acoust., Speech, Signal Processing, vol. 34, pp. 331-341, Apr. 1986.
    [98] B. Porat and B. Friedlander, “Analysis of the asymptotic relative efficiency of
    the MUSIC algorithm,” IEEE Trans. Acoust., Speech, Signal Processing, vol. 36,
    pp. 532-544, Apr. 1988.
    [99] P. Stoica and A. Nehorai, “MUSIC, maximum likelihood, and Cramer-Rao
    bound,” IEEE Trans. Acoust., Speech, Signal Processing, vol. 37, pp. 720-741,
    May 1989.
    [100] H. B. Lee and M. S. Wengrovitz, “Statistical characterization of the MUSIC null
    spectrum,” IEEE Trans. Signal Processing, vol. 39, pp. 1333-1347, June 1991.
    [101] C. Zhou, F. Haber, and D. L. Jaggard, “A resolution measure for the MUSIC
    algorithm and its application to plane wave arrivals contaminated by coherent
    interference,” IEEE Trans. Acoust., Speech, Signal Processing, vol. 39, pp. 454-
    463, Feb. 1991.
    [102] Q. T. Zhang, “Probability of resolution of the MUSIC algorithm,” IEEE Trans.
    Signal Processing, vol. 43, pp. 978-987, Apr. 1995.
    [103] M. Zatman, “How narrow is narrowband?” IEE Proc. Radar, Sonar Navig., vol.
    145, pp. 85-91, April 1998.
    [104] A. V. Oppenheim and R. W. Schafer, Discrete-Time Signal Processing. Prentice-
    Hall, Inc., 1989.
    [105] J.-D. Lin, W.-H. Fang, and J.-T. Chen, “Constrained TST MUSIC for joint
    spatio-temporal channel parameter estimation,” in Proc. IEEE Int’l Conf. Acoustics,
    Speech, and Signal Processing, pp. V-193-196, Hong Kong, 2003.
    [106] J.-D. Lin, W.-H. Fang, and J.-T. Chen, “Constrained TST MUSIC for joint
    spatio-temporal channel parameter estimation in DS/CDMA,” Wireless Communication
    and Mobile Computing, vol. 5, pp. 57-67, Jan. 2005.
    [107] G. Strang, Linear Algebra with Its Applications. 3rd ed. Hardcourt Brace Jovanovich,
    Inc., 1988.
    [108] S. M. Ross, Introduction to Probability and Statistics for Engineers and Scientists.
    John Wiley & Sons, Inc., 1987.
    [109] J. H. Wilkinson, The Algebraic Eigenvalue Problem. London, U.K.:Oxford Univ.
    Press, 1965.
    [110] J. Li and R. T. Compton, Jr., “Angle and polarization estimation using ESPRIT
    with a polarization sensitive array,” IEEE Trans. Antennas Propagations, vol.
    39, pp. 1376-1383, Sept. 1991.
    [111] Y. Hua, “A Pencil-MUSIC algoritm for finding two-dimensional angles and polarizations
    using crossed dipoles,” IEEE Trans. Antennas Propagations, vol. 41,
    pp. 370-376, Mar. 1993.
    [112] J. Li, P. Stoica and D. Zheng, “Efficient Direction and Polarization Estimation
    with a COLD Array,” IEEE Trans. Antennas and Propagations,, vol. 44, No. 4,
    pp. 539-547, Apr. 1996.

    QR CODE