簡易檢索 / 詳目顯示

研究生: 張凱富
Kai-Fu Jhang
論文名稱: 適用於微創手術訓練之二軸觸覺鉗系統開發與夾持力重現探討
Development and Haptic Rendering of a 2-DOF Medical Forceps System for Minimally Invasive Surgery Training
指導教授: 林紀穎
Chi-Ying Lin
口試委員: 郭重顯
Chung-Hsien Kuo
林淵翔
Yuan-Hsiang Lin
楊啟正
Chi-Cheng Yang
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 111
中文關鍵詞: 力量反饋虛擬實境微創手術觸覺回授最小可差覺
外文關鍵詞: Force feedback, Virtual reality, Minimally invasive surgery, Haptic, JND
相關次數: 點閱:284下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究設計一套二維微創手術觸覺鉗系統重現真實微創手術鉗在夾取物件時操作者所感受的力量。首先藉由荷重元量測微創手術鉗於夾持物件的反力,並進行運動學分析推算出夾爪相對於握把端的力量關係式,再由曲線擬合獲得不同材質的反力方程式。接著將所獲得之方程式運用在微處理器對兩軸致動器進行扭矩控制,使系統產生相對應反力給與操作者,並藉由調整方程式參數或是增加阻尼項擬合各種可能的反力情況。同時在電腦端建立虛擬實境,使操作者在操作系統時,可透過視覺回授更深入手術情境中。最後本研究針對心理物理學中的韋伯定律進行探討,藉由進行人因實驗獲得本系統之最小可差覺,並分析最小可差覺對於本研究的影響。本研究所開發之系統除了可使操作者同步感受到觸覺與視覺的回饋,並可作為手術模擬訓練以及力反饋具現化良好的探討平台。


In this research we have designed a haptic surgical forceps system with two degree of freedom to reproduce the force felt by operator while gripping object using real minimally invasive surgery forceps. At first, we use load cell to measure the reaction force from surgical forceps when gripping objects. Second, kinematic analysis is performed to obtain the relationship between jaw and the grip end. The force equation with respect to the displacement is obtained for grasping different materials through curve fitting. Third, the curve fitted equation is applied to generate the required torque commands of the two axis motors so that the operator can feel its corresponding reaction force. Moreover, we can reproduce different types of reaction forces by changing parameters or adding the damping term to the force equation. Fourth, a virtual environment is constructed as a visual feedback interface in order to make operators feel more realistic in surgical operations. At last, we discuss our experiment data using Weber's law for psychophysical analysis. We can get just noticeable difference through some human factors experiments, and then discuss the influences of just-noticeable-difference in this study. In summary, the developed system which integrates force feedback and visual feedback can be applied as a good testing platform for surgical training simulation and further investigation for force rendering.

摘要 Abstract 目錄 圖目錄 表目錄 第一章 緒論 1.1 前言 1.2 文獻回顧與研究動機 1.3 研究貢獻 1.4 論文架構 第二章 系統設備架構 2.1筆記型電腦 2.2 Arduino MEGA 2560控制板 2.3 Maxon 馬達 2.4 ESCON馬達控制器與IBT-3馬達控制板 2.5 Honeywell Sensotec 荷重元 2.6二維手術觸覺鉗平台 第三章 力量量測 3.1 力回饋介紹 3.2 觸覺介紹 3.3 力量量測 3.3.1 荷重元校正 3.3.2 夾爪延長機構設計 3.3.3 量測夾持材質反力 3.3.4 曲線擬合 第四章 觸覺具現化模擬 4.1 虛擬牆介紹 4.2 虛擬牆建立 4.3 系統介紹與運動學推導 4.4運動學分析與模擬 第五章 虛擬實境設計 5.1 何謂虛擬實境 5.2 虛擬實境建置 5.3 虛擬實境與系統連結 5.3.1 Arduino MEGA 2560相關通訊 5.3.2 Simulink相關通訊 5.3.3完整通訊連結 第六章 心理物理學探討 6.1何謂心理物理學 6.2心理物理學運用於醫療工程 第七章 實驗結果 7.1系統操作介紹 7.2物件反力探討 7.3人因實驗 7.3.1人因實驗條件 7.4人因實驗結果 7.4.1實驗一:手部軟硬度區分 7.4.2實驗二:微創手術鉗夾取軟硬度區分 7.4.3實驗三:觸覺鉗平台夾取軟硬度區分 7.4.4實驗四:估計分數與實際分數評分差異 7.4.5實驗五:相似度評分 7.4.6實驗六:絕對閾限與差別閾限量測 7.4.7實驗七:加入阻尼項進行夾取 7.4.8實驗八:閾限值趨勢探討 7.4.9實驗九:加入虛擬實境進行閾限值趨勢探討 第八章 結論與未來研究目標 8.1結論 8.2未來研究目標 參考文獻

[1] “開放型手術,” http://www.csh.org.tw/dr.tcj/Tseng2013/html/medicalimage.html.
[2] “微創型手術,” http://126.xingshuo.net/oumei/cyddutm.html.
[3] P. Dario, B. Hannaford, and A. Menciassi, “Smart Surgical Tools and Augment-ing Devices,” IEEE Transactions on Robotics and Automation, Vol. 19, No. 5, pp. 782-792, 2003.
[4] “達文西微創手術機器人,” http://www.vghtc.gov.tw/GipOpenWeb/wSite/ct?xItem=60365&ctNode=55713&mp=6574.
[5] C. R. Wagner, N. Stylopoulos, and R. D. Howe, “The Role of Force Feedback in Surgery: Analysis of Blunt Dissection,” In Proceedings of Haptic Interfaces for Virtual Environment and Teleoperator System, Washington, USA, March 24-25, 2002, pp. 68-74.
[6] B. Deml, T. Ortmaier, and U. Seibold, “The Touch and Feel in Minimally Inva-sive Surgery,” IEEE International Workshop on Haptic Audio Visual Environ-ments and their Applications, Ottawa, Canada, October 1-2, 2005, pp. 33-38.
[7] E. Samur, L. Santos-Carreras, A. Sengul, G. Rognini, S. Marchesotti, and H. Bleuler, “Role of Haptics in Surgical Robotics: Report on a Workshop,” IEEE Transactions on Haptics, Istanbul, Turkey, June 21-24, 2011, pp. 1-2.
[8] 王疇菘, “具備力回饋之遙控操作機械手臂於醫療外科手術之應用,” 私立長庚大學機械工程研究所碩士論文, 2013.
[9] M. Tavakoli, R. V. Patel, and M. Moallem, “A Haptic Interface for Comput-er-Integrated Endoscopic Surgery and Training,” IEEE Journal of Robotics and Automation, Vol. 14, No. 4, pp. 525-532, 1998.
[10] P. Puangmali, K. Althoefer, L. D. Seneviratne, D. Murphy, and P. Dasgupta, “State-of-the-Art in Force and Tactile Sensing for Minimally Invasive Surgery,” IEEE Sensors Journal, Vol. 8, No. 4, pp. 371-381, 2008.
[11] U. Seibold, B. Kubler, and G Hirzinger, “Prototype of Instrument for Minimally Invasive Surgery with 6-Axis Force Sensing Capability,” In Proceedings of IEEE International Conference on Robotics and Automation, Barcelona, Spain, April 18-22, 2005, pp. 496-501.
[12] G. Tholey, and J. P. Desai, “A Modular, Automated Laparoscopic Grasper with Three-Dimensional Force Measurement Capability,” In Proceedings of IEEE In-ternational Conference on Robotics and Automation, Roma, Italy, April 10-14, 2007, pp. 250-255.
[13] G. C. Burdea, “Invited Review: The Synergy Between Virtual Reality and Ro-botics,” IEEE Transactions on Robotics and Automation, Vol. 15, No. 3, pp. 400-410, 1999.
[14] B. Gao, S. Guo, N. Xiao, and J. Guo, “Design of the Virtual Reality based Ro-botic Catheter System for Minimally Invasive Surgery Training,” In Proceeding of the IEEE International Conference on Automation and Logistics, Zhengzhou, China, August 15-17, 2012, pp. 611-616.
[15] Y. Gao, M. Sedef, J. Amod, P. Peng, M. Choti, G. Hager, J. Berkley, and R. Ku-mar, “Towards Validation of Robotic Surgery Training Assessment Across Train-ing Platforms,” In Proceeding of IEEE/RSJ International Conference on Intelli-gent Robots and Systems , San Francisco, CA, September 25-30, 2011, pp. 2539-2544.
[16] M. Bianchi, J. C. Gwilliam, A. Degirmenci, and A. M. Okamura, “Characteriza-tion of an Air Jet Haptic Lump Display,” In Proceeding of IEEE International Conference on Robotics and Automation, Boston, MA, August 30, 2011, pp. 3467-3470.
[17] J. C. Gwilliam, M. Bianchi, L. K. Su, and A. M. Okamura, “Characterization and Psychophysical Studies of an Air-Jet Lump Display,” IEEE Transactions on Haptics, Vol. 6, No. 2, pp. 156-166, 2013.
[18] R. McColl, I. Brown, C. Seligman, F. Lim, and A. Alsaraira, “Haptic Rendering & Perception Studies for Laparoscopic Surgery Simulation,” In Proceedings of the IEEE EMBS Annual International Conference, New York, USA, August 30-September 3, 2006, pp. 833-836.
[19] 吳秉霖, “力回饋方向盤於虛擬實境之發展,” 國立交通大學機械工程系所碩士論文, 2004.
[20] 黃富俊, “即時動態模擬系統:力回饋搖桿的研製與實驗,” 國立交通大學機械工程系所碩士論文, 1999.
[21] 易春億, “具力回饋及阻抗控制之機器人手臂研究,” 國立臺灣大學機械工程學研究所碩士論文, 2010.
[22] 黃庭豪, “具力回饋的虛擬腹腔鏡手術模擬系統之研究,” 國立臺灣科技大學電子工程系碩士論文, 2013.
[23] 胡家勝, “阻抗控制於力覺回饋控制應用之設計與實現,” 國立成功大學機械工程學系碩士論文, 2002.
[24] 張詠翔, “具觸覺微型手之設計與製造以及氣動式觸覺回饋,” 國立臺灣大學生物產業機電工程學研究所碩士論文, 2010.
[25] 梁昶煒, “基於力回饋搖桿之虛擬毛筆書寫系統,” 國立交通大學電機與控制工程系所碩士論文, 2010.
[26] 曾盈達, “虛擬實境技術結合觸覺回饋裝置(Haptic Device)之系統整合設計,” 私立龍華科技大學機械系碩士班碩士論文, 2003.
[27] 劉恒愷, “虛擬觸覺系統中的力回饋修正與展現,” 國立中央大學資訊工程研究所碩士論文, 1999.
[28] R. Aggarwal, S. A. Black, J. R. Hance, A. Darzi, and N. J. Cheshire, “Virtual Re-ality Simulation Training Can Improve Inexperienced Surgeons' Endovascular Skills,” European Journal of Vascular and Endovascular Surgery, Vol. 31, No. 2, pp. 588-593, 2006.
[29] R. Dayal, P. L. Faries, S. C. Lin, J. Bernheim, S. Hollenbeck, B. DeRubertis, S. Trocciola, J. Rhee, J. McKinsey, N. J. Morrissey, and K. C. Kent, “Computer Simulation as A Component of Catheter-Based Training,” Journal of Vascular Surgery, Vol. 40, No. 6, pp. 1112-1117, 2004.
[30] E. Ulrich, K. Ludger, M. Wolfgang, Z. Rolf, and M. Wolf, “Virtual Reality: Preparation and Execution of Sinus Surgery,” Computer Aided Surgery, Vol. 3, No. 1, pp. 45-50, 1998.
[31] M. Guiatni, V. Riboulet, and A. Kheddar, “Design and Evaluation of a Haptic Interface for Interactive Simulation of Minimally-Invasive Surgeries,” In Pro-ceeding of IEEE/ASME International Conference on Advanced Intelligent Mecha-tronics, Singapore, July 14-17, 2009, pp. 1336-1341.
[32] A. M. Okamura, R. J. Webster JJI, J. T. Nolin, K. W. Johnson, and H. Jafry, “The Haptic Scissors: Cutting in Virtual Environments,” In Proceedings of the IEEE Interoations1 Conference on Robotics and Automation, Taipei, Taiwan, Septem-ber 14-19, 2003, pp. 828-833.
[33] A. M. Okamura, C. Richard, and M.. R. Cutkosky, “Feeling is Believing: Using a Force-Feedback Joystick to Teach Dynamic Systems,” Journal of Engineering Education, Vol. 91, No. 3, pp. 345-349, 2002.
[34] Aude Bolopion, Hui Xie, Dogan Sinan Haliyo, and St´ephane R´egnier, “Haptic Teleoperation for 3-D Microassembly of Spherical Objects,” IEEE/ASME Trans-actions on Mechatronics, Vol. 17, No. 1, pp. 116-127, 2010.
[35] N. S. H. Chu, and C. L. Tai, “Real-Time Painting with an Expressive Virtual Chinese Brush,” IEEE Computer Graphics and Applications, Vol. 24, No. 5, pp. 76-85, 2004.
[36] B. Unger, R. Hollis, and R. Klatzky, “JND Analysis of Texture Roughness Per-ception using a Magnetic Levitation Haptic Device,” In Proceeding of IEEE Eu-roHaptics Conference on Haptic Interfaces for Environment and Teleoperator Systems, Tsukuba, Japan, March 22-24, 2007, pp. 9-14.
[37] V. Vuskovic, M. Kauer, G. Szekely, and M. Reidy, “Realistic Force Feedback for Virtual Reality Based Diagnostic Surgery,” In Proceedings of IEEE Interna-tional Conference on Robotics and Automation , San Francisco, CA, April 24-28, 2000, pp. 1592-1598.
[38] M. A. Rahman, M. S. Mashuk, and P. Mahmud, “Augmented and Virtual Reality Based Approaches in Minimally Invasive Surgery Training,” In Proceedings of IEEE International Conference on Electronics and Vision, Dhaka, Bengal, May 17-18, 2013, pp. 1-4.
[39] L. Birglen, C. Gosselin, and N. Pouliot, “SHaDe, A New 3-DOF Haptic Device,” IEEE Transactions on Robotics and Automation, Vol. 18, No. 2, pp. 166-175, 2003.
[40] Andrew Biel, 人體解剖全書, 新北市: 楓葉社文化出版社, 2012.
[41] Gustav Theodor Fechner, 心理物理學綱要, 北京市: 中國人民大學出版社, 2015.
[42] Underwood, 心理學實驗研究法, 新北市: 楓葉社文化出版社, 1997.
[43] 薛慶文, 虛擬實境VRML程序設計與實例, 新竹市: 清華大學出版社, 2012.
[44] T. L. Gibo, A. J. Bastian, and A. M. Okamura, “Grip Force Control During Virtu-al Object Interaction: Effect of Force Feedback, Accuracy Demands, and Train-ing,” IEEE Transactions on Haptics, Vol. 7, No. 1, pp. 37-47, 2013.
[45] A. A. Stanley, A. M. Genecov, and A. M. Okamura, “Controllable Surface Hap-tics Via Particle Jamming and Pneumatics,” In Proceedings of IEEE Haptics Symposium, Houston, TX, February 23-26, 2014, pp. 1.
[46] A. M. Okamura, “Haptic Feedback in Robot-Assisted Minimally Invasive Sur-gery,” Current Opinion in Urology, Vol. 19, No. 1, pp. 102-107, 2009.
[47] T. Yamamoto, N. Abolhassani, S. Jung, A. M. Okamura, and T. N. Judkins, “Augmented Reality and Haptic Interfaces for Robot-Assisted Surgery,” Inter-national Journal of Medical Robotics, Vol. 8, No. 1, pp. 45-56, 2012.
[48] 陳世峰, “虛擬實境在測量實習教學之應用,” 私立中華大學土木工程系所碩士論文, 2003.
[49] “Arduino MEGA 2560控制板,” http://www.arduino.cc/.
[50] “Maxon Motor A-Max 26, Maxon Motor RE30, Maxon Motor RE40 and ES-CON馬達控制器” http://www.maxonmotor.com.tw/maxon/view/content/index.
[51] “IBT-3馬達控制板,” http://shop.aftabrayaneh.com/IBT-3_H-Bridge_50A_Driver.html.
[52] “Honeywell Sensotec荷重元,” http://www.newark.com/honeywell-s-c-sensotec/060-2443-07/load-cell/dp/27M3392.
[53] “訊號放大器,” http://www.interfaceforce.com/.
[54] “力回饋方向盤,” http://www.hardepc.com/ProductView.asp?ID=14.
[55] “Side Winder FF Pro搖桿,” http://www.engadget.com/products/microsoft/sidewinder/force-feedback/pro/.
[56] “UNIMAX開發的微創手術鉗,” http://www.unimaxmeds.com/gra.html.
[57] “時規皮帶與時規皮帶輪,” http://tw.misumiec.com/asia/CategorySearchView/103_30000000_31020000.html.
[58] “韋伯定律, 韋伯-費希納定律,” http://test.virtual-labs.ac.in/labs/hss01/02_Webers%20Law/.
[59] 邱銘聖, “骨骼鑽孔之力回饋操控模擬,” 國立成功大學機械工程系所碩士論文, 2008.

QR CODE