簡易檢索 / 詳目顯示

研究生: 呂國維
Kuo-Wei Lu
論文名稱: 活性碳纖維應用於超級電容器電極高溫處理對電化學性質之研究
Investigation of Carbon Fiber Applied to Supercapacitor Electrode and Electrochemical Properties
指導教授: 吳昌謀
Chang-Mou Wu
口試委員: 蘇清淵
Ching-Iuan Su
陳幹男
Kan-Nan Chen
邱顯堂
Hsien-Tang Chiu
李貴琪
Kuei-Chi Lee
邱智瑋
Chih-Wei Chiu
學位類別: 博士
Doctor
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2017
畢業學年度: 106
語文別: 英文
論文頁數: 123
中文關鍵詞: 活性碳纖維超級電容電極電化學性質
外文關鍵詞: Supercapacitor, Activated carbon fiber, Electronic conductivity
相關次數: 點閱:313下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究首先以嫘縈梭織布作為活性碳纖維原料,研究中以直立連續半開放式高溫爐,並以水蒸氣為活化源,經過氧化、碳化及活化工程,製造出活性碳纖維布,此研究中使用固定水蒸氣活化源供給量,但改變喂布速率,以及固定喂布速率,變化水蒸氣活化源供給量,並觀察活性碳纖維在1000oC下進行碳化及活化過程,結果顯示在不同製備條件的活性碳纖維布具有不同的比表面積和孔洞結構,並藉由三極式電化學反應系統,觀察活性碳纖維電極應用於超級電容器的電容性質。在製備活性碳纖維布過程中,發現降低喂布速率,可增加比表面積,並使活性碳纖維布具有較高之電容儲存量。當水蒸氣供給量增加時,可使活性碳纖維的比表面積及中孔百分率提高,電阻值下降。活化源供給量160 ml/min時,所製備的活性碳纖維布,其比表面積達2332.1 m2/g,中孔比率78.7%,在較慢的掃描速率(5mV/s)時,可得到電容值430.4 F/g,在快速充放電(100mV/s)下仍可保留60%的電容值。另一方面則以聚丙烯腈作為奈米纖維膜原料,經由兩段連續式氧化與1000oC碳化、活化工程,製造出奈米活性纖維膜後,在各溫度條件進行熱處理加工後,進而探討經入熱處理後的奈米活性碳纖維膜樣品放電速率的電容保留率,研究結果顯示熱處理溫度對奈米活性碳纖維膜特性有明顯的影響,且在超級電容器電極中可觀察放電速率對電容保留率的多寡。


This study uses rayon woven fabrics as the raw material for activated carbon fabrics, which were manufactured by oxidation, carbonization and activation engineering in a continuous semi-open high-temperature furnace. First, the activated carbon fabrics are prepared under two specific manufacturing conditions with different production rates and flow rates of steam activation at 1000 oC. Then the electrochemical prosperities of the activated carbon fabrics are evaluated by a threeelectrode device. The experimental results show that the BET specific surface area and electrical capacitance are higher with a lower production rate. Moreover, the steam activator higher flow rate under the proposed approach. Activated carbon fabrics with a 2332.1 m2/g specific surface area and 78.7 % mesopore ratio result in a higher electronic conductivity of 430.4 F/g at the low rate charge (5 mV/s) and with 60 % capacitance retention during the high-speed charging-discharging process (100 mV/s). On the other hand, polyacrylonitrile was used as the nanofiber membrane material. Through A two-stage continuous process, namely, oxidation process and carbonization and activation process, an activated nanofiber membrane material was fabricated. Subsequently, the membrane underwent high-temperature heat treatment (1100-1500 oC) to explore the effect of temperature on its properties. Charge/discharge rate was employed to determine the capacitance retention ratio to evaluate the applicability of the fabricated membrane in high-power super capacitor electrodes. The results revealed that in the treated membrane, the lattice size increased from 1.24 nm to between 3.20 and 4.72 nm. In addition, the volume resistivity was reduced from 6 Ω-cm to between 9.70E-2 and 3.85E-2 Ω-cm, substantially improving the electric conductivity. The activated carbon nanofiber membrane treated with high temperature at 1100 oC exhibited the highest capacitance of 704 F/g at a scan rate of 5 mV/s.

博士學位論文指導教授推薦書 博士學位考試委員審定書 摘要 I Abstract Ⅲ 致謝 V Table of Contents VI List of Tables IX List of Figures X Chapter 1 Prolegomenon 1 1.1 Indtroduction 1 1.2 The Supercapacitors Technique 7 1.3 Electrochemical Double-layer Capacitors 10 1.4 Introduction to Activated Carbons Materials 12 1.5 Formation of Pore Structure 13 1.6 Adsorption Mechanism 15 1.6.1 Adsorption Mechanism of Silver Ion onActivated Carbon 15 1.6.2 Ion Exchange Adsorption 16 1.6.3 Reduction Adsorption of Silver Ions 17 1.6.4 Adsorption of Bacterium on Activated Carbon 21 1.6.5 Adsorbing Mechanism of Modified Absorbent 22 References 25 Chapter 2 Evaluation of Activated Carbon Fiber Applied in Supercapacitor Electrodes 29 Abstract 29 2.1 Introduction 30 2.2 Experimental 34 2.3 Results and discussion 38 2.3.1 Weight Yield 38 2.3.2 Nitrogen Absorption Isotherms with ACFs at 77ok 41 2.3.3 BET Surface Area and Pore Characteristics 44 2.3.4 Cycle Voltammograms 46 2.3.5 Capacitance Value of Cycle Voltammograms 51 2.3.6 Analysis of Electrochemical Impedance Spectroscopy 54 2.4 Conclusions 61 References 62 Chapter 3 Effect of High Temperature Treatment on Electrochemical Properties of CarbonNanofiber Membrane 64 Abstract 64 3.1 Introduction 65 3.2 Experimental 70 3.2.1 Nanaofiber Membrane Preparation 71 3.2.2 Oxidation 72 3.2.3 Carbonization and Activation 73 3.2.4 High-temperature Heat Treatment 74 3.2.5 Material Characteristic Analysis 76 3.2.5.1 X-ray Diffraction Analysis 76 3.2.5.2 Resistivity Analysis 77 3.2.5.3 Electrochemical Property Analysis 78 3.2.5.4 Cyclic Voltammetry 79 3.2.5.5 Electrochemical Impedance Spectroscopy 80 3.3 Results and Discussion 81 3.3.1 X-ray Diffraction Analysis 82 3.3.2 Analysis of the Activated Carbon Nanofiber Membrane Conductivity 85 3.3.3 Electrochemical Impedance Spectroscopy 88 3.3.4 Cyclic Voltammetry Curve 93 3.3.5 Capacitance Analysis of Cyclic Voltammetry 102 3.4 Conclusions 105 References 106 作 者 簡 歷 109 博碩士論文授權書

1. S. Kasaoka, Y. Sakata, E. Tanaka, R. Naitoh, Int. Chem. Eng., 29, 101 (1989).
2. R.Y. Lin, J. Economy, Appl. Polym. Symp., 21, 143 (1973).
3. S. H. Lin, F. M. Hus, Ind. Eng. Chem. Res., 34, 2110 (1995).
4. J. B. Parra, J. C. de Sousa, J. J. Pis, J. A. Pajares, R. C. Bansal, Carbon, 33, 801 (1995).
5. S. F. Grebeunikov, Fridman, Fiber Chem., 21, 511 (1983).
6. H. Marsh, B. Rand, Carbon, 9, 47 (1971).
7. P. Gonzalez-Vilchez, A. Linares-Solano, J. de D. Lopez-Gonzalez, F. Rodriguez-Reinoso, Carbon, 17, 441 (1979).
8. F. Rodriguez-Reinoso, A. Linares-Solano, J. M. Martin-Martinez, J. D. Lopez-Gonzalez, Carbon, 22, 123 (1984).
9. J. Alcañiz-Monge, D. Cazorla-Amorós, A. Linares-Solano, S. Yoshida, A. Oya, Carbon, 32, 1277 (1994).
10. W. Watt, B. V. Perov, “Handbook of Composites”, Vol. 1, pp.327-387, Elsevier Science Publishers B.V., North-Holland (1985).
11. J. de D. López-González, F. Martínez-Vilchez, F. Rodríguez-Reinoso, Carbon, 18, 413 (1980).
12. F. Rodríguez-Reinoso, M. Molina-Sabio, Carbon, 30, 1111 (1992).
13. R. Torregrosa, J. M. Martín-Martínez, Fuel, 70, 1173 (1991).
14. M. C. Mittelmeijer-Hazeleger, J. M. Martin-Martinez, Carbon, 30, 695 (1992).
15. H. Marsh, J. A. Griffiths, “High Rresolution Electron Microscopy Study of Graphitization of Graphizable Carbon”, Toyohashi, Tokyo, Japan (1982).
16. J. B. Donnet, R. C. Bansal, “Carbon Fibers”, pp.46-55, Marcel Dekker, New York (1990).
17. A. G. Pandolfo, A. F. Hollenkamp, J. Power Sources, 157, 11 (2006).
18. R. Kotz, M. Carlen, ElectrochimicaActa, 45, 2483 (2000).
19. K. Hung, C. Masarapu, T. Ko, B. L. Wei, J. Power Sources, 193, 944 (2009).
20. Brunauer S., Emmett P. H., Teller E., J. Amer. Chem. Soc.,60, 309 (1938).
21. S. Biniak, G. Szymanski, J. Siedlewski, A. Swiatkowski, Carbon, 35, 1799 (1997)
22. S. K. Ryu, S. Y. Kim, N. Gallego, D. D. Edie, Carbon, 37, 1619 (1999).
23. S. K. Ryu, S. Y. Kim, Z. J. Li, M. Jaroniec, J. Colloid Interface Sci., 220, 157 (1999).
24. S. J. Park, Y. S. Jang, J. Colloid Interface Sci., 261, 238 (2003).
25. A. Oya, S. Yoshida, Y. Abe, T. Iizuka, N. Makiyama, Carbon, 31, 71 (1993).
26. A. Oya, M. Kimura, T. Sugo, A. Katakai , Y. Abe, T. Iizuka, N. Makiyama, A. Linares-Solano, C. Salinas-Martinez deLecea, Carbon, 32, 107 (1993).
27. C. I. Su, C. C. Peng, Y. C. Lu, Textile Res J, 79, 1486 (2009).
28. C. I. Su, C. C. Peng, Y. C. Lu, Textile Res J, 81, 730 (2010).
29. A. K. Shukla, Resonance, 6, 72 (2001).
30. P. J. Mahon, C. J. Drummond, Aust. J. Chem. 54, 473 (2001).
31. A. Nishino, J. Power Sources, 60, 137 (1996).
32. J. Nickerson, Proceedings of the Ninth International Seminar on DoubleLayer Capacitors and Similar Energy Storage Devices, DeerfieldBeach, FL (1999).
33. V. Barranco, M. A. Lillo-Rodenas, A. Linares-Solano, A.Oya, F. Pico, J. Ibanez, F. Agullo-Rueda, J. M. Amarilla, J. M. Rojo, J. Phys. Chem. C, 114, 10302 (2010).
34. H. Shi, ElectrochimicaActa, 41, 1633 (1996).
35. G. Xu, C. Zheng, Q. Zhang, J. Huang, M. Zhao, J. Nie, X.Wang, F. Wei, C. Zhang, Q. Huang, J. Zhao, M. Nie, J. Wang, X. W. Fei, Nano Research, 4, 870 (2011).
36. B. Xu and Y. P. Feng, Solid State Communications, 150, 2015 (2010).
37. A. Davies, A. Yu, Canadian J. Chem. Eng., 89, 1342(2011).
38. Q. Wu, Y. Xu, Z. Yao, A. Liu, G. Shi, ACS Nano, 4,1963 (2010).
39. W. Xing, S. Z. Qiao, R. G. Ding, F. Li, G. Q. Lu, Z. F. Yan, H. M. Cheng, Carbon, 44, 216 (2006).
40. X. Li, W. Xing, S. Zhuo, J. Zhou, F. Li, S. Z. Qiao, G.Q. Lu, Bioresource Technology, 102, 1118 (2011).
41. Q. Qu, P. Zhang, B. Wang, Y. Chen, S. Tian, Y. Wu, R.Holze, J. Phys. Chem. C, 113, 14020 (2009).
42. A. F. Burke, T. C. Murphy, Materials for Electrochemical Energy Storage and Conversion-Batteries, Capacitors and Fuel Cells: Symposium Held, April 17-20, 1995, San Francisco, CA, Materials Research Society, Pittsburgh, PA, p. 375 (1995).
43. H. von Helmholtz, Ann. Phys. (Leipzig), 89, 211(1853).
44. D. Qu and H. Shi, J. Power Sources, 74, 99 (1998).
45. G. Gouy, J. Phys., 9, 457 (1910).
46. D. L. Chapman, Phil. Mag., 25, 475 (1913).
47. O. Stern, Zeit. Elektrochem., 30, 508 (1924).
48. D.C. Grahame, Chem. Rev., 41, 441 (1947).
49. J. O. Bockris, M. A. Devanathan, K. Muller, Proc. R. Soc., A274, 55 (1963).
50. H. I. Becker, Low voltage electrolytic capacitor, United States Patent 2,800,616 (1957).
51. R. A. Rightmire, Electrical energy storage apparatus, United States Patent 3,288,641 (1966).
52. D. L. Boos, S. D. Argade, International Seminar on Double Layer Supercapacitors and Similar Energy Storage Devices, Florida Educational Seminars, Deerfield Beach, FL, p. 1 (1991).
53. D. L. Boos, Electrolytic capacitor having carbon paste electrodes, United States Patent 3,536,963 (1970).
54. J. N. Bohra and J. Scient, Ind. Res., 34, 451 (1975).
55. F. J. Vestola and Jr. P. L. Walker, J. Chem. Phys., 58, 20(1961).
56. I. Mochida and Y. Korai, Carbon, 32, 1119 (1994).
57. W. A. Stell, M. B. Rao, and W. A. Jenkins, Langmuir, 1,137 (1985).
58. P. G. Hall, P. M. Gittins, J. M. Winn, J. Robertson, Carbon, 23, 353 (1985).
59. P. Ehrburger, J. Dentzer, J. Lahaye, Carbon, 25,129 (1987).
60. Z. R. Yue, W. Jiang, L. Wang, H. Toghiani, S. D. Gardner, Jr. C. U. Pittman, Carbon, 37, 1607 (1999).
61. Jr. C. U. Pittman, W. Jiang, Z. R. Yue, S. Gardner, L. Wang, H. Toghiani, C. A. Leon, Carbon, 37, 1797 (1999).
62. Y. L. Wang, Y. Z. Wan, X. H. Dong, G. X. Cheng, H. M. Tao, T. Y. Wen, Carbon, 36, 1567 (1998).
63. R. W. Fu, H. M. Zeng, Y. Lu, Carbon, 32, 593 (1994).
64. N. George, J. T. Davies, J. Chem. Tech. Biotechnol., 43, 173 (1988).
65. L. A. Jonas, Carbon, 16, 115 (1978).

1. M. Inagaki, H. Konno, and O. Tanaike, J. Power Sources, 195, 7880 (2010).
2. R. Kötz and M. Carlen, Electrochim. Acta, 45, 2483(2000).
3. P. Kurzweil, “Encyclopedia of Electrochemical PowerSources”, pp.956-957, 2009.
4. K. S. Ryu, K. M. Kim, N. G. Park, Y. J. Park, and S. H.Chang, J. Power Sources, 103, 305 (2002).
5. L. Li, E. Liu, J. Li, Y. Yang, H. Shen, Z. Huang, X. Xiang,and W. Li, J. Power Sources, 195, 1516 (2010).
6. K. Hung, C. Masarapu, T. Ko, and B. Wei, J. PowerSources, 193, 944 (2009).
7. B. Xu, Y. Chen, G. Wei, G. Cao, H. Zhang, and Y. Yang,Mater. Chem. Phys., 124, 504 (2010).
8. B. Xu and Y. P. Feng, Solid State Commun., 150, 2015(2010).
9. Y. Zhou, Z. Y. Qin, L. Li, Y. Zhang, Y. L. Wei, L. F. Wang,and M. F. Zhu, Electrochim. Acta, 55, 3904 (2010).
10. A. R. Boccaccini, J. Cho, T. Subhani, C. Kaya, and F.Kaya, J. Eur. Ceram. Soc., 30, 1115 (2010).
11. C. I. Su and C. L. Wang, Fiber. Polym., 8, 477 (2007).
12. C. I. Su and C. L. Wang, Fiber. Polym., 8, 482 (2007).
13. C. I. Su, Z. L. Zeng, C. C. Peng, and C. H. Lu, Fiber.Polym.,13, 21 (2012).
14. C. H. Wang, U.S. Patent, 5819350 (1998).
15. S. Brunauer, P. H. Emmett, and E. Teller, J. Am. Chem.Soc., 60, 309 (1938).
16. G. Xu, C. Zheng, Q. Zhang, J. Huang, M. Zhao, J. Nie, X.Wang, and F. Wei, Nano Res., 4, 870 (2011).
17. S. Brunauer, L. S. Deming, W. E. Deming, and E. Teller, J.Am. Chem. Soc., 62, 1723 (1940).
18. J. H. de Boer, “The Structure and Properties of PorousMaterials”, p.68, Butterworths, London, 1958.
19. B. Xu, F. Wu, R. Chen, G. Cao, S. Chen, and Y. Yang, J.Power Sources, 195, 2118 (2010).
20. A. G. Pandolfo and A. F. Hollenkamp, J. Power Sources, 157, 11 (2006).
21. V. Ruiz, C. Blanco, M. Granda, R. Menendez, and R.Santamaria, J. Electroanal. Chem., 618, 17 (2008).
22. H. Probstle, C. Schmitt, and J. Fricke, J. Power Sources, 105, 189 (2002).

1. H. E. Becker, U. S. Patent, 2800616 (1957).
2. A. G. Pandolfo and A. F. Hollenkamp, J. Power Sources, 157, 11 (2006).
3. L. M. Li, E. H. Liu, J. Li, Y. J. Yang, H. J. Shen, Z. Z.Huang, X. X. Xiang, and W. Li, J. Power Sources, 195,1516 (2010).
4. K. H. Hung, C. R. Masarapu, T. H. Ko, and B. Q. Wei, J.Power Sources, 193, 944 (2009).
5. H. Pang, Y. Zhang, W.-Y. Lai, Z. Hu, and W. Huang, NanoEnergy, 15, 303 (2015).
6. B. Li, M. Zheng, H. Xue, and H. Pang, Inorg. Chem.Front., 3, 175 (2016).
7. B. Xu, Y. F. Chen, G. Wei, G. P. Cao, H. Zhang, and Y. S.Yang, Mater. Chem. Phys., 124, 504 (2010).
8. B. Xu and Y. P. Feng, Solid State Commun., 150, 2015(2010).
9. Y. Zhou, Z. Y. Qin, L. Li, Y. Zhang, Y. L. Wei, L. F. Wang,and M. F. Zhu, Electrochim. Acta, 55, 3904 (2010).
10. A. R. Boccaccini, J. Cho, T. Subhani, C. Kaya, and F.Kaya, J. Eur. Ceram. Soc., 30, 1115 (2010).
11. Q. Wu, Y. X. Xu, Z. Y. Yao, A. R. Liu, and G. Q. Shi, ACSNano.,4, 1963 (2010).
12. J. M. Ko, K. S. Ryu, S. Kim, and K. M. Kim, J. Appl.Electrochem.,39, 1331 (2009).
13. Q. T. Qu, P. Zhang, B. Wang, Y. H. Chen, S. Tian, Y. P.Wu, and R. Holze, J. Phys. Chem. C, 113, 14020 (2009).
14. G. A. Snook and P. Kao, J. Power Sources, 196, 1 (2011).
15. R. Kötz and M. Carlen, Electrochim. Acta, 45, 2483 (2000).
16. B. B. Wang, Z. D. Yin, and X. G. Xiao, IEEE, 1002 (2010).
17. D. Iannuzzi and P. Tricoli, IEEE, 280 (2010).
18. N. Mokhoff, “Energy Storage to be a $45 billion Market in2015”, Manhasset, New York, EE Times, 2010.
19. J. G. Zhao, L. X. Yang, F. Y. Li, R. C. Yu, and C. Q. Jin,Solid State Sci., 10, 1947 (2008).
20. J. G. Zhao, F. Y. Li, and C. Q. Jin, Solid State Commun., 149, 818 (2009).
21. P. H. Huang, C. I. Su, and C. H. Wang, J. Adv. Mater.,38,35 (2006).
22. P. H. Huang, C. I. Su, and C. H. Wang, J. Adv. Mater.,37,70 (2005).
23. J. B. Donne and R. C. Bansal, “Carbon Fibers”, 2nd ed., Marcel Dekker, New York, 1990.
24. J. B. Parra, J. C. Sousa, J. J. Pis, J. A. Pajares, and R. C.Bansal, Carbon, 33, 801 (1995).
25. J. D. Lopez-Gonzalez, Carbon, 18, 413 (1980).
26. H. Marsh and B. Rand, Carbon, 9, 47 (1971).
27. P. Gonzalez-Vilchez, A. Linares-Solano, J. de D. Lopez-Gonzalez, and F. Rodriguez-Reinoso, Carbon, 17, 441(1979).
28. M. Harry and R. R. Francisco, “Activated Carbon”,Elsevier Science Ltd., London, pp.13-15, 2006.
29. H. Marsh and J. A. Griffiths, “High Resolution ElectronMicroscopy StudyofGraphiyization of GraphitizableCarbon”, Toyohashi, Tokyo Japan, 1982.
30. V. Ruiz, C. Blanco, M. Granda, R. Menendez, and R.Santamaria, J. Electroanal. Chem., 618, 17 (2008).
31. H. Probstle, C. Schmitt, and J. Fricke, J. Power Sources, 105, 189 (2002).
32. J. P. Boudou, A. M. Alonzo, and J. M. D. Tascon, Carbon, 38, 1021 (2000).
33. M. Ishikawa, A. Sakamoto, M. Morita, and Y. Matsuda, J.Power Sources, 60, 233 (1996).
34. K. Jurewicz, K. Babel, A. Źiółkowskic, and H. Wachowskac, Electrochim. Acta, 48, 1491 (2003).
35. X. Li and K. Horsma, Carbon, 38, 133 (2000).
36. Z. R. Tue, W. Jiang, L. Wang, S. D. Gardner, and C. U.Pittman, Carbon, 37, 1785 (1999).

無法下載圖示 全文公開日期 2022/12/25 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE