簡易檢索 / 詳目顯示

研究生: 林凱帆
Kaifan - Lin
論文名稱: 反應濺鍍法製備氮化鋁銦鎵薄膜及其特性分析
Processing and Property Characterization of AlInGaN Thin Films Prepared by Reactive Sputtering
指導教授: 郭東昊
Dong-Hau Kuo
口試委員: 何清華
Ching-Hwa Ho
薛人愷
Ren-Kae Shiue
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 92
中文關鍵詞: 氮化鋁銦鎵薄膜濺鍍電學性質
外文關鍵詞: AlInGaN, Thin film, Sputtering, Electrical property
相關次數: 點閱:253下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 為探究使用反應式真空濺鍍機製備氮化鋁銦鎵薄膜的制程,與分析此制程下沉積之薄膜的性質。此論文設定兩組不同鋁銦比例的靶材,一組靶材包含摩爾百分比固定5%鋁,銦含量從7.5%、15%、25%的三個陶金靶,另外一組靶材固定25%銦,鋁含量從5%、7.5%、15%的按個陶金靶。靶材經過熱壓機將金屬鎵、銦、鋁以及氮化鎵粉末熱壓而成。反應式磁控濺鍍機輸出功率設定120 瓦特,加熱板溫度設定200 oC,所有的靶材在混合氬氣和氮氣的環境下進行濺鍍,薄膜沉積在矽(100)基板上。結果顯示,所有薄膜表現(10 10 )擇優取向的多晶閃鋅礦結構,而且薄膜的成分對其成膜品質、電學、光學具有影響。此外,使用固定鋁含量的靶材組制程p-n 二極體,I-V 量測顯示二極體開路電壓最高到9.2V,漏電流最低達6.65 × 10-9 A (在 -5 V)。


    By reactive sputtering in the mixing atmosphere of Ar and N2, two sets of AlInGaN films were deposited from Al0.05InxGa0.95-xN (x = 0.075, 0.15 and 0.25) targets and AlxIn0.25Ga0.75-xN (x = 0.05, 0.075 and 0.15) targets on Si (100) substrates at 200 oC and radio-frequency (RF) output power of 120 watt. The cermet targets mixed with metal powders and ceramic GaN for sputtering were made by hot pressing. The AlInGaN films show a wurtzite crystalline structure with a preferential m-(10 10 ) growth plane. The effects of compositional variation on the formation of AlInGaN films and its electrical and optical properties were investigated. A n-AlInGaN/p-Si heterostructure diode was designed and the I-V measurement of diodes illustrates that the device contained the Al0.05InxGa0.95-xN target deposited films own the high turn-on voltage of 9.2 V and the low leakage current of 6.65 × 10-9 A (at -5 V).

    Abstract .................................................................................................................. I Table of Contents ................................................................................................. III List of Tables ....................................................................................................... VI List of Figures .................................................................................................... VII Part I Introduction .................................................................................................. 1 1.1 Foreword ................................................................................................ 1 1.2 Purpose 5 Part II History of III-Nitride Review ..................................................................... 9 2.1 III-Nitride semiconductor .......................................................................... 9 2.2 Ternary III-Nitride alloy semiconductor .................................................. 15 2.3 Quaternary AlInGaN alloy semiconductor .............................................. 20 Part III Experimental Method and Procedure ...................................................... 34 3.1 Experimental materials and specification ................................................ 34 3.2 Experimental instruments ........................................................................ 35 3.2.1 Ultrasonic vibration cleaning machine ......................................... 35 3.2.2 Vacuum hot press machine ........................................................... 35 3.2.3 Magnetron radio-frequency sputtering system ............................. 36 3.3 Experimental procedure ........................................................................... 37 3.3.1 Powder configuration for the target .............................................. 37 3.3.2 Target Fabrication ......................................................................... 38 3.3.3 Slice and cleaning of substrates .................................................... 39 3.3.4 Sputter thin films........................................................................... 39 3.3.5 Device design ................................................................................ 40 3.3.6 Film characteristic measurement .................................................. 42 3.4 Introduction to Measurement Instruction and Parameters .................... 43 3.4.1 High Power X-Ray Diffractometer ............................................... 43 3.4.2 Field Emission Scanning Electron Microscope, FE-SEM ............ 45 3.4.3 Atomic Force Microscope, AFM .................................................. 46 3.4.4 Hall Effect Measurement System ................................................. 48 3.4.5 UV-Vis/NIR Spectrophotometer, UV-Vis/NIR ............................ 49 3.4.6 Semiconductor device parameter analyzer ................................... 50 Part IV Results and discuss .................................................................................. 52 4.1 Characteristics of the Al0.05InxGa(0.95-x)N films deposited by RF magnetron sputtering. .......................................................................................... 52 4.1.1 XRD .............................................................................................. 52 4.1.2 SEM .............................................................................................. 55 4.1.3 EDS ............................................................................................... 55 4.1.4 AFM .............................................................................................. 58 4.1.5 HALL ............................................................................................ 59 4.1.6 Optical property ............................................................................ 62 4.2 Characteristics of the Al0.05InxGa(0.95-x)N films deposited by RF magnetron sputtering. .......................................................................................... 65 4.2.1 XRD .............................................................................................. 65 4.2.2 SEM .............................................................................................. 68 4.2.3 EDS ............................................................................................... 68 4.2.4 AFM .............................................................................................. 70 4.2.5 HALL ............................................................................................ 72 4.2.6 Optical Property ............................................................................ 74 4.3 AlInGaN electron device analysis ........................................................... 77 4.3.1 p-n junction diode ......................................................................... 77 Part V Conclusions .............................................................................................. 80 Part VI References ............................................................................................... 82

    1. Feng, Milton, et al. "Device technologies for RF front-end circuits in next-generation wireless communications." Proceedings of the IEEE 92.2 (2004): 354-375.
    2. Alaie, Z., S. Mohammad Nejad, and M. H. Yousefi. "Recent advances in ultraviolet photodetectors." Materials Science in Semiconductor Processing 29 (2015): 16-55.
    3. Monemar, Bo, and Galia Pozina. "Group III-nitride based hetero and quantum structures." Progress in Quantum Electronics 24.6 (2000): 239-290.
    4. Berthet, Fanny, et al. "Characterization and analysis of electrical trap related effects on the reliability of AlGaN/GaN HEMTs." Solid-State Electronics 72 (2012): 15-21.
    5. Saidi, I., et al. "Thermal effects in AlGaN/GaN/Si high electron mobility transistors." Solid-State Electronics 61.1 (2011): 1-6.
    6. Ghazai, A. J., et al. "The effects of quantum wells number and the built-in polarization on the performance of quaternary AlInGaN UV laser diode." Optik-International Journal for Light and Electron Optics 123.10 (2012): 856-859.
    7. Lee, Sung-Nam, et al. "High-power AlInGaN-based violet laser diodes with InGaN optical confinement layers." Applied Physics Letters 93.9 (2008): 091109.
    8. Jang, T., et al. "Recent achievements of AlInGaN based laser diodes in blue and green wavelength." Integrated Optoelectronic Devices 2007. International Society for Optics and Photonics, 2007.
    9. Nagahama, Shin-ichi, et al. "Recent progress of AlInGaN laser diodes." Integrated Optoelectronic Devices 2005. International Society for Optics and Photonics, 2005.
    10. Lee, Han Cheng, et al. "AlInGaN ultraviolet-C photodetectors with a Ni/Ir/Au multilayer metal contact." Solid-State Electronics 54.4 (2010): 488-491.
    11. Oder, T. N., et al. "Photoresponsivity of ultraviolet detectors based on InxAlyGa1− x− yN quaternary alloys." Appl. Phys. Lett 77.6 (2000): 791-793.
    12. Ghazai, Alaa J., et al. "Quaternary n-Al0.08In0.08Ga0.84N/p-Si-based solar cell." Superlattices and Microstructures 51.4 (2012): 480-485.
    13. Wang, Xinqiang, and Akihiko Yoshikawa. "Molecular beam epitaxy growth of GaN, AlN and InN." Progress in crystal growth and characterization of materials 48 (2004): 42-103.
    14. Yam, F. K., and Z. Hassan. "InGaN: An overview of the growth kinetics, physical properties and emission mechanisms." Superlattices and Microstructures 43.1 (2008): 1-23.
    15. Matsuoka, T., et al. "Wide-gap semiconductor InGaN and InGaAlN grown by MOVPE." Journal of electronic materials 21.2 (1992): 157-163.
    16. Hahn, Herwig, et al. "First polarization-engineered compressively strained AlInGaN barrier enhancement-mode MISHFET." Semiconductor Science and Technology 27.5 (2012): 055004.
    17. Aumer, M. E., et al. "High optical quality AlInGaN by metalorganic chemical vapor deposition." Applied physics letters 75.21 (1999): 3315-3317.
    18. Liu, J. P., et al. "Structural and optical properties of quaternary AlInGaN epilayers grown by MOCVD with various TMGa flows." Journal of crystal growth 260.3 (2004): 388-393.
    19. McIntosh, F. G., et al. "Growth and characterization of AlInGaN quaternary alloys." Applied physics letters 68.1 (1996): 40-42.
    20. Soh, C. B., et al. "Inverted hexagonal pits formation in AlInGaN epilayer." Journal of crystal growth 268.3 (2004): 478-483.
    21. Liu, J. P., et al. "Structural and optical properties of quaternary AlInGaN epilayers grown by MOCVD with various TMGa flows." Journal of crystal growth 260.3 (2004): 388-393.
    22. Loganathan, R., et al. "Influence of TMIn flow rate on structural and optical quality of AlInGaN/GaN epilayers grown by MOCVD." Journal of Alloys and Compounds 656 (2016): 640-646.
    23. Yu, S. F., et al. "Growth of quaternary AlInGaN with various TMI molar rates." Journal of Crystal Growth 312.12 (2010): 1920-1924.
    24. Wang, Bao-Zhu, and Xiao-Liang Wang. "Epitaxial Growth of AlInGaN Quaternary Alloys by RF-MBE." 24 (2009): 559-562.
    25. Abid, M. A., et al. "Characterization of AlxInyGa1− x− yN quaternary alloys grown on sapphire substrates by molecular-beam epitaxy." Materials Science in Semiconductor Processing 14.2 (2011): 164-169.
    26. Harafuji, Kenji, Taku Tsuchiya, and Katsuyuki Kawamura. "Molecular dynamics simulation for evaluating melting point of wurtzite-type GaN crystal." Journal of applied physics 96.5 (2004): 2501-2512.
    27. Su, Ching-Hua, et al. "Energy gap in GaN bulk single crystal between 293 and 1237K." Journal of crystal growth 235.1 (2002): 111-114.
    28. Maruska, H. Pi, and J. J. Tietjen. "The preparation and properties of Vapor‐Deposited single‐crystal‐line GaN." Applied Physics Letters 15.10 (1969): 327-329.
    29. Yoshida, S., S. Misawa, and S. Gonda. "Improvements on the electrical and luminescent properties of reactive molecular beam epitaxially grown GaN films by using AlN‐coated sapphire substrates." Applied Physics Letters 42.5 (1983): 427-429.
    30. Juza, Robert, and Harry Hahn. "Über die kristallstrukturen von Cu3N, GaN und InN metallamide und metallnitride." Zeitschrift für anorganische und allgemeine Chemie 239.3 (1938): 282-287.
    31. Hovel, H. J., and J. J. Cuomo. "Electrical and Optical Properties of rf‐Sputtered GaN and InN." Applied Physics Letters 20.2 (1972): 71-73.
    32. Marasina, L. A., I. G. Pichugin, and M. Tlaczala. "Preparation of InN epitaxial layers in InCl3-NH3 system." Kristall und Technik 12.6 (1977): 541-545.
    33. Wakahara, Akihiro, and Akira Yoshida. "Heteroepitaxial growth of InN by microwave‐excited metalorganic vapor phase epitaxy." Applied Physics Letters 54.8 (1989): 709-711.
    34. Tansley, T. L., and C. P. Foley. "Optical band gap of indium nitride." Journal of Applied Physics 59.9 (1986): 3241-3244.
    35. Qian, Z. G., et al. "Infrared reflection characteristics in InN thin films grown by magnetron sputtering for the application of plasma filters." Journal of applied physics 92.7 (2002): 3683-3687.
    36. Natarajan, B. R., et al. "Mechanisms of reactive sputtering of indium I: Growth of InN in mixed Ar-N2 discharges." Thin Solid Films 69.2 (1980): 201-216.
    37. Yodo, Tokuo, et al. "Strong band edge luminescence from InN films grown on Si substrates by electron cyclotron resonance-assisted molecular beam epitaxy." Applied physics letters 80.6 (2002): 968-970.
    38. Strite, S., and Hy Morkoç. "GaN, AlN, and InN: a review." Journal of Vacuum Science & Technology B 10.4 (1992): 1237-1266.
    39. Namkoong, Gon, et al. "Role of sapphire nitridation temperature on GaN growth by plasma assisted molecular beam epitaxy: Part I. Impact of the nitridation chemistry on material characteristics." Journal of applied physics 91.4 (2002): 2499-2507.
    40. Ho, I‐hsiu, and G. B. Stringfellow. "Solid phase immiscibility in GaInN." Applied Physics Letters 69.18 (1996): 2701-2703.
    41. Li, Cheng-Che, et al. "Thick InxGa1− xN Films Prepared by Reactive Sputtering with Single Cermet Targets." Journal of electronic materials 42.8 (2013): 2445-2449.
    42. Shinoda, Hiroyuki, and Nobuki Mutsukura. "Structural properties of GaN and related alloys grown by radio-frequency magnetron sputter epitaxy." Thin Solid Films 516.10 (2008): 2837-2842.
    43. Lorenz, K., et al. "Anomalous ion channeling in AlInN/GaN bilayers: determination of the strain state." Physical review letters 97.8 (2006): 085501.
    44. Butté, R., et al. "Current status of AlInN layers lattice-matched to GaN for photonics and electronics." Journal of Physics D: Applied Physics 40.20 (2007): 6328.
    45. Koukitu, A., Y. Kumagai, and H. Seki. "Thermodynamic analysis of the MOVPE growth of InAlN." physica status solidi (a) 180.1 (2000): 115-120.
    46. Ahl, J-P., et al. "Morphology, growth mode and indium incorporation of MOVPE grown InGaN and AlInGaN: A comparison." Journal of Crystal Growth 398 (2014): 33-39.
    47. Kim, Jongmin, et al. "Improved light-output power of InGaN-based multiple-quantum-well light-emitting diodes by GaN/InAlGaN/GaN multi-barrier." Current Applied Physics 16.2 (2016): 150-154.
    48. Liu, Tong, et al. "Growth and characterization of quaternary AlInGaN multiple quantum wells with different aluminum composition." Applied Surface Science 301 (2014): 178-182.
    49. Liu, Tong, et al. "Growth and characterization of quaternary AlInGaN multiple quantum wells with different aluminum composition." Applied Surface Science 301 (2014): 178-182.
    50. Suihkonen, S., et al. "MOVPE growth and characterization of InAlGaN films and InGaN/InAlGaN MQW structures." Journal of Crystal Growth 310.7 (2008): 1777-1780.
    51. Matsuoka, Takashi. "Progress in nitride semiconductors from GaN to InN-MOVPE growth and characteristics." Superlattices and Microstructures 37.1 (2005): 19-32.
    52. Piner, E. L., et al. "Growth and Properties of InGaN and AlInGaN Thin Films on (0001) Sapphire." MRS Internet Journal of Nitride Semiconductor Research 1 (1996): e43.
    53. Han, J., and A. V. Nurmikko. "Advances in AlGaInN blue and ultraviolet light emitters." IEEE Journal of selected topics in quantum electronics 8.2 (2002): 289-297.
    54. Li, J., et al. "Growth and optical properties of InxAlyGa1−x−yN quaternary alloys." Applied Physics Letters 78.1 (2001): 61-63.
    55. Aumer, M. E., et al. "High optical quality AlInGaN by metalorganic chemical vapor deposition." Applied physics letters 75.21 (1999): 3315-3317.
    56. Bejtka, K., et al. "Composition and luminescence of AlInGaN layers grown by plasma-assisted molecular beam epitaxy." Journal of Applied Physics 104.7 (2008): 073537.
    57. Li, Yao, et al. "Alloy disorder scattering limited mobility of two-dimensional electron gas in the quaternary AlInGaN/GaN heterojunctions." Physica E: Low-dimensional Systems and Nanostructures 67 (2015): 77-83.
    58. Hu, S. Y., et al. "Characterization of temperature-dependent photoluminescence properties of InAlGaN quaternary alloys." Journal of Alloys and Compounds 587 (2014): 153-157.
    59. Hu, S. Y., et al. "Investigation of defect-related optical properties in AlxInyGa1−x−yN quaternary alloys with different Al/In ratios." Journal of Luminescence 132.4 (2012): 1037-1040.
    60. Ansara, I., J. P. Bros, and C. Girard. "Thermodynamic analysis of the Ga-In, Al-Ga, Al-In and the Al-Ga-In systems." Calphad 2.3 (1978): 187-196.
    61. Liu, Yang, et al. "Growth and characterization of high-quality quaternary AlInGaN epilayers on sapphire." Journal of crystal growth 259.3 (2003): 245-251.
    62. Muthukumaran, S., and R. Gopalakrishnan. "Structural, FTIR and photoluminescence studies of Cu doped ZnO nanopowders by co-precipitation method." Optical Materials 34.11 (2012): 1946-1953.
    63. Pan, Yaobo, et al. "Influence of growth rate on structural and optical properties of AlInGaN quaternary epilayers." Journal of crystal growth 298 (2007): 341-344.
    64. Liu, W., et al. "Characterization of AlInGaN quaternary epilayers grown by metal organic chemical vapor deposition." Journal of crystal growth 268.3 (2004): 509-514.
    65. Wang, Te-Chung, et al. "Quaternary AlInGaN multiple quantum well 368nm light-emitting diode." Journal of crystal growth 287.2 (2006): 582-585.
    66. Wang, Te-Chung, et al. "Quaternary AlInGaN multiple quantum well 368nm light-emitting diode." Journal of crystal growth 287.2 (2006): 582-585.
    67. Liu, J. P., et al. "Structural and optical properties of violet InGaN/AlInGaN light-emitting diodes grown by MOCVD." Journal of crystal growth 295.1 (2006): 7-11.
    68. Fu, Yi-Keng, et al. "Effect of AlInGaN barrier layers with various TMGa flows on optoelectronic characteristics of near UV light-
    92
    emitting diodes grown by atmospheric pressure metalorganic vapor phase epitaxy." Solid-State Electronics 62.1 (2011): 142-145.
    69. Li, J., et al. "Growth and optical properties of InxAlyGa1−x−yN quaternary alloys." Applied Physics Letters 78.1 (2001): 61-63.
    70. Schroder, Dieter K. Semiconductor material and device characterization. John Wiley & Sons, 2006.
    71. Sze, Simon M., and Kwok K. Ng. Physics of semiconductor devices. John Wiley & Sons, 2006.
    72. Ghazai, ALAA J., et al. "Effects of thermal annealing of Pt Schottky contacts on quaternary n- Al0.08In0.08Ga0.84N thin film." J. Optoelectron. Adv. M 6.1-2 (2012): 324-326.
    73. Tuan, Thi Tran Anh, et al. "Temperature dependence of electrical characteristics of n-InxGa1− xN/p-Si hetero-junctions made totally by RF magnetron sputtering." Thin Solid Films 589 (2015): 182-187.

    QR CODE