簡易檢索 / 詳目顯示

研究生: 謝宜宏
Yi-Hung Hsieh
論文名稱: 基於隨機設計法求解可靠度最佳化問題
Solving Reliability-based Optimization Problems By Using Stochastic Design Approach
指導教授: 卿建業
Jianye Ching
口試委員: 林宏達
Horn-Da Lin
劉家男
Chia-Nan Liu
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 104
中文關鍵詞: 子集合模擬法敏感度分析可靠度最佳化可靠度分析最大熵隨機取樣法
外文關鍵詞: sensitivity analysis, reliability analysis, reliability-based optimization, subset simulation, maximum entropy, stochastic simulation
相關次數: 點閱:209下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

估算系統的破壞機率函數相當不易,為了達到這個目的似乎需要大量的可靠度分析,但是我們發展了一個新方法只需要一次可靠度分析,便能完成此破壞機率函數的估算,此方法被稱為「隨機設計法」。本方法因為引用了最大熵理論,不但能有效率估算破壞機率函數,還能估算出其信心區間,也可以進行可靠度敏感度的估算。更進一步我們基於隨機設計法,提出一個可靠度最佳化三步驟法來求解可靠度最佳化問題。過去可靠度最佳化問題因為其可靠度限制式不易處理,而導致此問題難以求解,此三步驟法的基本想法便是使用隨機設計法,將可靠度限制式轉換為一般的限制式,第一步是估算出符合可靠度限制式的設計參數,並找出其信心區間,第二步則是由轉換過的最佳化問題找出候選樣本,第三步是找出候選樣本中其破壞機率最接近目標破壞機率,此候選樣本應為最佳解之良好近似。最後,本論文也提供一些範例對隨機設計法以及可靠度最佳化三步驟法進行驗證。


An approach is developed to locally estimate the failure probability of a system under various design values called “Stochastic design”. Although it seems to require numerous reliability analysis runs to locally estimate the failure probability function, which is a function of the design variables, the approach only requires a single reliability analysis run. The key idea of the approach is to implement the maximum entropy principle in estimating the failure probability function. The resulting local failure probability function estimate is more robust; moreover, it is possible to find the confidence interval of the failure probability function as well as estimate the gradient of the logarithm of that function with respect to the design variables. The approach should be valuable for reliability-based optimization and reliability sensitivity analysis. The new solving reliability based-on optimization (RBO) method by Stochastic design called RBO3steps. The basic idea is to transform the reliability constraints in the target RBO problem into non-probabilistic ones by first estimating the failure probability function and the confidence interval using minimal amount of computation. Samples of the failure probability function are then drawn from the confidence intervals. In the second step, candidate solutions of the RBO problems are found based on the samples, and in the third step, the final design solution is screened out of the candidates to ensure that the failure probability of the final design meets the target. Finally, some examples are investigated to verify the Stochastic design and RBO3steps method.

論文摘要 I ABSTRACT II 致  謝 IV 目  錄 V 圖 目 錄 VII 表 目 錄 VIII 符 號 表 IX 第一章 緒論 1 1.1 研究動機及目的 1 1.2 研究方法 2 1.3 論文架構 3 第二章 文獻回顧 4 2.1 可靠度分析分析方法 4 2.1.1 蒙地卡羅模擬法 4 2.1.2 一階可靠度分析 6 2.1.3 重要性取樣法 8 2.1.4 子集合模擬法 9 2.1.5 各方法優劣比較及適用時機 12 2.2 可靠度敏感度分析 12 2.3 破壞機率函數之估算法 14 2.3.1 反應曲面法 15 第三章 隨機設計法 17 3.1 問題定義 17 3.2 破壞機率函數之估算 17 3.3 使用子集合模擬法估算P(F)並產生f(θ|F)的樣本 19 3.3.1 使用子集合模擬法估算P(F) 20 3.3.2 使用子集合模擬法產生f(θ|F)的樣本 22 3.3.3 在子集合模擬法中選擇漸進破壞事件 22 3.3.4 產生更多的f(θ|F)樣本 23 3.4 使用最大熵理論估算f(θ|F) 24 3.4.1 求解拉格朗日乘數 27 3.5 估算破壞機率函數 28 3.6 估算破壞機率函數之信心區間 28 3.6.1 估算破壞機率P(F)之變異係數 29 3.6.2 估算拉格朗日乘數之標準差 30 3.6.3 估算破壞機率函數之變異係數 33 第四章 隨機設計法範例 35 4.1 受到隨機刺激的單自由度線性系統 36 4.2 受震的十層樓建築物 37 4.3 重力式土壩 40 4.4 擋土牆 42 第五章 可靠度最佳化 45 5.1 可靠度最佳化第一步驟 47 5.2 可靠度最佳化第二步驟 47 5.3 可靠度最佳化第三步驟 48 第六章 可靠度最佳化範例 50 6.1 一個簡單且有解析解的可靠度最佳化問題 51 6.1.1 可靠度最佳化第一步驟 52 6.1.2 可靠度最佳化第二步驟 53 6.1.3 可靠度最佳化第三步驟 53 6.2 受震的十層樓建築物 54 6.3 重力式土壩 57 6.4 擋土牆 59 第七章 討論與結論 63 7.1 討論 63 7.1.1 隨機設計法 63 7.1.2 可靠度最佳化三步驟法 64 7.2 結論 65 7.2.1 隨機設計法 65 7.2.2 可靠度最佳化三步驟法 66 第八章 建議 67 8.1 隨機設計法 67 8.2 可靠度最佳化三步驟 67 參考文獻 69 作者簡介 87

1. Liu, P.-L. and Der Kiureghian, A.(1991), “Optimization algorithms for structural reliability”, Structural Safety, 9(3), 161-177.
2. Hasofer, A.M. and Lind, N.C.(1974). “Exact and invariant second-moment code format”, J. Eng. Mech., 100(1), 111-121.
3. Rosen, J.(1961). “The gradient projection method for nonlinear programming, part II. Nonlinear constraints”, J. Soc. Ind. Appl. Math., 9, 514-532.
4. Au, S.K. and Beck, J.L.(2001). “Estimation of small failure probability in high dimensions by subset simulation”, Probabilistic Engineering Mechanics, 16, 263-277.
5. Ching, J., Beck, J.L. and Au, S.K.(2005). “Hybrid Subset Simulation method for reliability estimation of dynamic systems subject to stochastic excitations”. Probabilistic Engineering Mechanics, 20(3), 199-214.
6. Gasser, M. and Schueller, G.I.(1997). “Reliability-based optimization of structural systems”, Mathematical Methods of Operations Research, 46, 287-307.
7. Jensen, H.A.(2005). “Structural optimization of linear dynamical systems understochastic excitation: a moving reliability database approach”, Comput. Methods Appl. Mech. Engrg., 194, 1757–1778.
8. Ormoneit, D. and White, H.(1999). “An Efficient Algorithm To Compute Maximum Entropy Densities”, Econometric Reviews, 18, 127-140.
9. Zellner, A. and Highfield, R.A.(1988). “Calculation of maximum entropy distributions and approximation of marginal posterior distributions”, Journal of Econometrics, 37, 195-209.
10. Bickel, P.J. and Doksum, K.A. “Mathematical statistics : basic ideas and selected topics”, Holden-Day, San Francisco, 1977.
11. Schuëller, G.I., Pradlwarter, H.J., Beck, J.L., Au, S.K., Katafygiotis, L.S., and Ghanem, R.(2005). “Benchmark study on reliability estimation in higher dimensions of structural systems: an overview”, Eurodyn 2005 conference.
12. Ang, G.L., Ang, H.S. and Tang, W.H.(1992). “Optimal importance sampling density estimator”, J. Engrg. Mech., 118(11), 1146–1163.
13. Karamchandani, A. and Cornell, C.A.(1992). “Sensitivity Estimation within First and Second Order Reliability Methods”, Structural Safety, 11, 95-107.
14. Bjerager, P., and Krenk, S.(1989). “Parametric Sensitivity in First Order Reliability Theory”, Journal of Engineering Mechanics, 115(7), 1577-1582.
15. Enevoldsen, I.(1994). “Sensitivity Analysis or Reliability-Based Optimal Solution”, Journal of Engineering Mechanics, 120(1), 198-205.
16. Armijo, D.G. Luenberger.(1984). “Linear and Nonlinear Programming, 2nd edition”, Addison-Wesley, Reading, Massachusetts.
17. Hohenbichler, M.(1984). “Mathematische Grundlagen der Zuverlassigkeitsmethode erster Ordnung”, und einige Erweiterungen. In: PhD thesis, Technical University of Munich, Germany.

QR CODE