簡易檢索 / 詳目顯示

研究生: 詹凱琳
Kai-Lin Zhan
論文名稱: 三維掃描影像色彩修正技術
Color Correction Methods of 3D Scanning Images
指導教授: 陳鴻興
Hung-Shing Chen
林宗翰
Tzung-Han Lin
口試委員: 詹文鑫
Wen-Hsin Chan
孫沛立
none
陳建宇
none
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 色彩與照明科技研究所
Graduate Institute of Color and Illumination Technology
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 110
中文關鍵詞: 三維色彩修正三維亮度修正相機色彩修正三維掃描三維貼圖影像多項式回歸
外文關鍵詞: 3D color correction, 3D luminance correction, camera color correction, 3D scanning, 3D texture image, polynomial regression
相關次數: 點閱:399下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 目前在三維掃描領域,評斷三維物體重建好壞之關鍵,通常只有考慮物體形狀之精準性,而忽略了表面顏色,也是影響觀感重要因素之一。三維掃描物體之表面顏色,來自三維重建時,所記錄之三維貼圖影像上色彩資訊。因此,本論文致力於解決三維貼圖影像色彩問題,進而達到修正三維物體表面顏色之效果。本論文分為兩種實驗,實驗一稱為色彩測量方式,實驗二稱為電腦圖學方式,目的皆為修正三維貼圖影像的色彩資訊。實驗一目的為利用色彩測量方式,藉由校色樣本與測量數值化之標準值,修正三維貼圖影像色彩資訊。三維貼圖影像與平面影像處理的不同之處,在於處理第三維度之亮度訊號與色彩資訊,因此進一步利用校正白球,設計方法修正三維亮度訊號與色彩資訊。實驗結果以具參考意義之色差評價,與亮度訊號分布曲線評價,驗證結果優劣。實驗二目的則是模擬真實光源條件,並設計三維亮度訊號補償函數。利用模擬光源照射於三維物體之渲染結果,有效地補償三維貼圖影像之亮度訊號,實驗結果以明度差與心理實驗評價。


    Nowadays, the judgment of the 3D reconstructed object is generally cared about accuracy of the shape, but the quality of the face color is often neglected in 3D scanning field. The color information is one of the most important factors for people while evaluating the object. The face color comes from the recorded 3D texture images while 3D reconstructing. Therefore, this thesis focuses on solving the problem of the color information of the 3D texture images, and correcting the face color further. There are two experiments in this thesis. One is defined as correcting 3D texture images with the method of measuring standard of the color information, the other is defined as correcting the 3D texture images with the method of computer graphics. Both of the purposes of the experiments are correcting the color information of the 3D texture images. The purpose of the experiment 1 is correcting the color information of the 3D texture images with calibration charts and the measured values. The difference of the 3D texture images and the 2D images is the luminance and the color information in the third dimension. Therefore, the calibration ball is used for correcting the luminance and the color information in the third dimension. The results of the experiment 1 are compared with the color difference and evaluated the curves of the luminance distribution. The purpose of the experiment 2 is simulating reality lighting condition, and designing the functions to compensate luminance in the third dimension. Use the rendering of the 3D objects, which is under the simulated lighting conditions, and the designed functions to compensate the luminance of the 3D texture images efficiently. The results of the experiment 2 are evaluated with the luminance difference and psychological experiment.

    摘要 Abstract 目錄 圖目錄 表目錄 第一章 緒論 1.1  研究背景與目的 1.2  論文架構 1.3  名詞解釋 第二章 原理與文獻探討 2.1  三維位置資訊對應之二維貼圖影像位置 2.2  三維貼圖影像修正相關文獻 2.3  色彩空間轉換原理 第三章 利用色彩測量方式修正三維貼圖影像與結果分析 3.1  研究架構與目的 3.2  實驗條件 3.2.1 實驗器材 3.2.2 三維掃描物體建立 3.3  貼圖影像色彩修正 3.3.1 光源均勻化 3.3.2 灰色平衡修正 3.3.3 相機色彩修正 3.4  三維亮度訊號與色彩資訊修正 3.4.1 多項式回歸修正三維亮度訊號 3.4.2 對照表修正三維亮度訊號與色彩資訊 3.5  實驗結果分析 3.5.1 色差評價 3.5.2 亮度訊號分布曲線評價 第四章 利用電腦圖學方式補償三維貼圖影像 4.1  研究架構與目的 4.2  真實光源模擬 4.3  三維亮度訊號補償 4.4  實驗結果分析 4.4.1 明度差評價 4.4.2 心理實驗 第五章 結論與未來課題 參考文獻

    [1] R. D. Myers, ColorChecker Passport Technical Review. July 2010.
    [2] B. T. Phong, “Illumination for computer generated pictures,” in Communications of the ACM, 1975, vol. 18, no. 6, pp. 311–317.
    [3] G. Hong, M. R. Luo, and P. A. Rhodes, “A study of digital camera colorimetric characterization based on polynomial modeling,” Journal of Color Research and Application, vol. 26, no. 1, pp. 76–84, Feb. 2001.
    [4] CIE Publication 116, Industrial Colour-Difference Evaluation. CIE Central Bureau, Vienna, 1995.
    [5] J. Heikkila and O. Silvén, “A four-step camera calibration procedure with implicit image correction,” in Institute of Electrical and Electronics Engineers (IEEE), 1997, pp. 1106–1112.
    [6] G. Bradski, Learning OpenCV, pp. 370–404. O’Reilly, 2008.
    [7] Jr. R. S. Wright, OpenGL SuperBible 5th Edition, pp. 229–288. Addison-Wesley, 2010.
    [8] X-rite, http://www.xrite.com/. (access at July 2016)
    [9] Topcon UA-1000A, http://www.topcon-techno.co.jp/en/products/op_meas/ua-1000a.html. (access at July 2016)
    [10] L. Ma, E. Bondarev, and P. H. N. de With, “3D colored model generation based on multiview textures and triangular mesh,” in 2013 Seventh International Conference on Distributed Smart Cameras (ICDSC), 2013, pp. 1–6.
    [11] Q. Shan, R. Adams, B. Curless, Y. Furukawa, and S. M. Seitz, “The visual turing test for scene reconstruction,” in Proceedings - 2013 International Conference on 3D Vision (3DV 2013), 2013, pp. 25–32.
    [12] M. Kazhdan, and H. Hoppe, “Poisson surface reconstruction,” in Proceedings of the fourth Eurographics symposium on Geometry processing (SGP '06), 2013, pp. 61–70.
    [13] A. Baumberg, “Blending Images for Texturing 3D Models,” in The 13th British Machine Vision Conference (BMVC 2002), 2002, pp. 404–413.
    [14] 黃日鋒、詹文鑫、陳鴻興、胡國瑞、徐道義、孫沛立、羅梅君編著,顯示色彩工程學第二版,全華圖書,2011。
    [15] P. Shirley and S. Marschner, Fundamentals of Computer Graphics 3rd Edition, pp. 233-236. A K Peters, 2009.
    [16] T. H. Lin, “Resolution adjustable 3D scanner based on using stereo cameras,” in 2013 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA 2013), 2013, pp. 1–5.
    [17] The formula of Color difference (CIE 1994), http://www.brucelindbloom.com/index.html?Eqn_DeltaE_CIE94.html. (access at Aug. 2016)
    [18] sRGB標準色彩空間,https://www.w3.org/Graphics/Color/sRGB. (access at Aug. 2016)
    [19] L. L. Thurstone, “A law of comparative judgment,” Psychological Review, vol. 34, no. 4, pp. 273–286, Jul. 1927.

    QR CODE