簡易檢索 / 詳目顯示

研究生: 陳昱廷
Yu-Ting Chen
論文名稱: 高爾夫球桿頭機械手臂全自主研磨系統
Autonomous 6-Axis Robot Grinding System for Golf Club Head
指導教授: 林其禹
Chyi-Yeu Lin
口試委員: 林其禹
Chyi-Yeu Lin
李維楨
Wei-Chen Lee
林柏廷
Po-Ting Lin
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 80
中文關鍵詞: 高爾夫桿頭研磨3D掃描點雲拼接研磨層估算相機手眼校正力感測六軸機械手臂
外文關鍵詞: Golf club head grinding, 3D scan, Point cloud combine, Estimate grinding layer, Camera hand-eye calibration, Force sensor, 6-axis robot arm
相關次數: 點閱:137下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 高爾夫桿頭脫蠟鑄造後的下一道工序就是去除澆道殘餘金屬,並將表面研磨
    成光滑面。目前產業界,這項工作都是依靠人力完成。人工進行研磨,除具潛在
    人體安全威脅外,人工研磨的精準度和重複性不高,造成產品品質不穩定。想利
    用機械手臂的穩定動作取代人力,進行自動研磨系統,但是因為脫蠟鑄造下,桿
    頭形狀具高度變異性,無法教導出的固定手臂軌跡方式進行。
    本論文旨在發展智慧自動化創新技術,先使用機械手臂夾取桿 頭進行 3D 掃
    描後取得包含澆道殘餘金屬的表面點雲,接者利用曲面綴合技術模擬出研磨後光
    滑面的點雲,再利用分層演算法計算出需要移除部分的分層體積,再依照分層研
    磨演算法得到機械手臂末端移動的研磨軌跡。
    機械手臂執行的部分藉由掃描器、工件、砂 帶 機以及機械手臂的座標系轉換
    算出研磨軌跡的轉移矩陣,利用正向運動學、逆向運動學得知六軸姿態。考慮到
    整個系統的環境,配合掃描器、砂輪機、機械手臂,產生出合適的手臂移動姿態,
    並在夾爪的上面加裝力感測器與力補償機構,能夠在研磨的時候透過力感測器接
    受到的力值來進一步判斷是否過磨, 以期達到理想的研磨後圓滑表面水平。


    The next process after lost-wax casting is to remove residual metal from the sprue and grind the surface to become a smooth one. At present in the industry, this work is done by people. Use manpower to grind, in addition to potential human safety threats, artificial grinding precision and repeatability is not high, and let the product quality unstably. We want to use the stable action of robot arm instead of human to carry out automatic grinding system. However, due to the high variability of golf club head shape under lost-wax casting, it cannot be defined in the way of fixed robot arm posture and trajectory to grind.
    The purpose of this thesis is to develop intelligent automation innovation technology. First, use robot arm to pick up the golf head for 3D scanning and then get the surface point cloud containing the residual metal of sprue is obtained. Then, the surface point cloud is simulated by the curved surface fitting after grinding, and the layer volume of the part to be removed is calculated by the layering algorithm. Then the grinding trajectory of the end of the robot arm was obtained according to the layered grinding algorithm.
    Part of executing the robot arm, the transfer matrix of the grinding trajectory is calculated by the conversion of the scanner, the workpiece, the grinder and the robot arm’s coordinate system. The six-axis attitude is obtained by the forward kinematics and the reverse kinematics. Considering the environment of the whole system, with the scanner, grinder, robot arm, to produce a suitable robot arm movement posture, and install force sensor and force compensation mechanism above the gripper. It can received the force value received through the force sensor when it was grinding, to further judge whether the over grinding is happening, in order to achieve the ideal smooth surface level after grinding.

    摘要 Abstract 目錄 圖目錄 表目錄 第一章 緒論 1-1 前言 1-2 研究動機與研究目的 1-3 文獻回顧 第二章 研究理論 2-1 掃描系統 2-1-1 相機成像原理 2-1-2 結構光成像模型 2-2 電腦視覺處理技術 2-2-1 DBSCAN聚類分割 2-2-2 ICP點雲匹配 2-2-3 三維法向量估計 2-2-4 主成分分析 PCA(Principal components analysis) 2-3 機械手臂理論 2-3-1 正向運動學(Forward kinematics) 2-3-2 逆向運動學(Inverse kinematics) 2-3-3 尤拉角轉換 第三章 環境配置與實驗器材 3-1 掃描器 3-2 六軸機械手臂(Point cloud Combonation) 3-3 砂輪機 第四章結合掃描自動研磨系統 4-1 掃描拼接 4-1-1 校正塊校正 4-1-2 側面旋轉掃描與頂部掃描 4-2 凸點分割及分層 4-2-1 凸點位置分割與曲面擬合 4-2-2 凸點自動分層 4-3 研磨軌跡點規劃 4-4 機械手臂移動路經規劃 第五章 實驗結果 5-1 掃描結果 5-2 凸點自動分層結果 5-2-1 凸點部分移除結果 5-2-2 凸點下曲面擬合結果 5-2-3 凸點自動分層結果 5-3 軌跡規劃結果 5-4 研磨結果 5-5 研磨時力感測數值分析結果 第六章 結論與未來展望 6-1 結論 6-2 未來展望 參考文獻

    1.康正道, 利用多重3D掃描資料建構數位牙齒模型之網格架構系統, in 機械工程所. 2010, 國立中正大學: 嘉義縣. p. 141.
    2.林超良, 基於點雲的自主機器手臂磨削軌跡分層生成, in 機械工程系. 2021, 國立臺灣科技大學: 台北市. p. 96.
    3.Aleotti, J., V. Micelli, and S. Caselli, An Affordance Sensitive System for Robot to Human Object Handover. International Journal of Social Robotics, 2014. 6(4): p. 653-666.
    4.Diankov, R., Automated construction of robotic manipulation programs. 2010.
    5.Stigler, S.M., Gauss and the invention of least squares. the Annals of Statistics, 1981: p. 465-474.
    6.DiFrancesco, P.-M., D. Bonneau, and D.J. Hutchinson, The implications of M3C2 projection diameter on 3D semi-automated rockfall extraction from sequential terrestrial laser scanning point clouds. Remote Sensing, 2020. 12(11): p. 1885.
    7.Margalit, D., J. Rabinoff, and L. Rolen, Interactive linear algebra. Georgia Institute of Technology, 2017.
    8.Han, X.F., et al., Iterative guidance normal filter for point cloud. Multimedia Tools and Applications, 2018. 77(13): p. 16887-16902.
    9.Tsai, R.Y. and R.K. Lenz, A new technique for fully autonomous and efficient 3 d robotics hand/eye calibration. IEEE Transactions on robotics and automation, 1989. 5(3): p. 345-358.
    10.Oomori, S., T. Nishida, and S. Kurogi, Point cloud matching using singular value decomposition. Artificial Life and Robotics, 2016. 21(2): p. 149-154.
    11.Abdi, H. and L.J. Williams, Principal component analysis. Wiley interdisciplinary reviews: computational statistics, 2010. 2(4): p. 433-459.
    12.Spong, M.W. and M. Vidyasagar, Robot dynamics and control. 2008: John Wiley & Sons.
    13.Hanh, L.D. and H.T. Phuc, Simultaneously extract 3D seam curve and weld head angle for robot arm using passive vision. International Journal of Interactive Design and Manufacturing - Ijidem, 2022. 16(3): p. 1125-1134.
    14.Birant, D. and A. Kut, ST-DBSCAN: An algorithm for clustering spatial–temporal data. Data & knowledge engineering, 2007. 60(1): p. 208-221.
    15.Geng, J., Structured-light 3D surface imaging: a tutorial. Advances in Optics and Photonics, 2011. 3(2): p. 128-160.
    16.Machado, M., P. Flores, and J. Ambrósio, Techniques for geometrical detection of contact within multibody systems, in New Trends in Mechanism and Machine Science. 2015, Springer. p. 471-478.

    QR CODE