簡易檢索 / 詳目顯示

研究生: 黃鈺勝
Yu-Sheng Huang
論文名稱: 具多優點之混合型光纖放大器研究
Study on Multiple-merit Hybrid Fiber Amplifiers
指導教授: 廖顯奎
Shien-Kuei Liaw
口試委員: 張嘉男
Chia-Nan Chang
呂海涵
Hai-Han Lu
董正成
Jeng-Cherng Dung  
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 104
中文關鍵詞: 光纖放大器拉曼效應光纖光柵色散補償
外文關鍵詞: Fiber amplifier, Raman effect, Fiber grating, Dispersion compensation
相關次數: 點閱:202下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文致力於多特性優化之混合型光纖放大器研究,設計核心理念如下:高增益、低雜訊、較寬的增益波段、增益平坦、增益箝制、單波長泵激雷射的使用、提升泵激功率的使用效率以及精確的色散補償等。內容主要分為三部分:第一部分為傳統式與反射式架構於摻鉺及拉曼光纖放大器的實驗與結果討論,在相同的泵激功率激發下反射式架構能提供更高的增益,但對兩種光纖放大器帶來的影響如下:(1)對於摻鉺光纖放大器而言,雜訊指數變差了!主要源於雜訊包含了後向放大自發輻射與放大後的前向放大自發輻射;(2)對於拉曼光纖放大器而言,自發式拉曼散射的影響較為嚴重,也需注意極化相關增益之影響,使用反射架構極化之影響更大!。此部分內容主要分析增益提升架構,所帶來的優勢與缺陷。
    第二部分為論文主軸,主要分析串聯式與並聯架構之放大特性,藉由實驗量測與結果討論,此兩大類架構具有不同的特性輸出,如串聯式架構之優勢在於使用最少的泵激雷射便能得到高增益輸出;而並聯式架構優勢在於能降多通道時訊號間增益的干擾,最後整理出此兩類架構所具有的特性。此部分之討論主要為:高增益、低雜訊、寬增益波段、單波長泵激雷射使用、單綑色散補償光纖的作訊號的色散補償。
    第三部分為克服上述架構中殘餘色散的問題,並討論增益等化技術,藉由OptiSystem軟體模擬的方式進行,,最後也提出能改善殘餘色散問題的技術,主要作法為使用光纖光柵搭配長短不等的色散光纖作為新的色散補償模組,如此一來各波長訊號皆能獲得最理想的色散補償程度。而在增益等化方面可藉由調整各光纖光柵的反射率來達成,在適當反射率下各波長訊號能有同樣的增益輸出,增益變動量約為±0.5dB以內。因此經由上述的實驗與模擬結果,本論文成功提出了多功能優化特性之混合型光纖放大器。


    In this thesis, we focus on the research of hybrid fiber amplifier (HFA) with multi-characteristics. The major properties of HFA includes: high gain, low noise figure (N.F.), broadband amplification, gain equalization and clamping and accurate dispersion compensation. We use single Pump LD to design the broadband HFA and improve the efficiency of pump power using. This thesis is divided into three parts: the first part is the experiment and discussion of EDFA and RFA with conventional and reflective configurations. The major advantage of reflective configuration is gain improvement with same pump power. But the impacts of the two amplifiers have more worser N.F. for EDFA and higher PDG for RFA, respectively. In this part, we discuss the merit and defect of the gain enhancement amplifier scheme.
    The second part is to analyze the properties of serial and parallel type HFAs. We may understand the major difference of the two types HFAs by analyzing the experimental results. For example, the property of serial type is high gain with lower pump power and the parallel type is to reduce the gain inter-impact in multi-wavelengths amplification. In this part, the characteristics we discuss includes: high gain, low N.F., broadband amplification, using single pump LD and dispersion compensation with a segment of DCF.
    The major issue of the third part is to conquer the residual dispersion problem and discuss the gain equalization technology. This part uses OptiSystem 6.0 to simulate the HFA scheme. For the first issue, we proposd a new configuration to solve the residual dispersion. The major method is new DCM design, it includes several FBGs with specific wavelengths and different length of DCFs. Therefore, the accurate dispersion compensation for different wavelengths is realized. For the gain equalization, we can adjust the reflectivity of FBG with specific wavelength to realize this characteristic, and the gain variation can be controlled within ±0.5dB. In summary,we have successfully proposed a hybrid fiber amplifier (HFA) in multi-characteristics configuration.

    第一章 緒論 1 1-1 前言 1 1-2 研究動機 1 1-3 論文架構 2 第二章 光纖放大器文獻探討 4 2-1 摻鉺光纖放大器 4 2-2 拉曼光纖放大器 10 2-3 C+L Band光纖放大器 18 第三章 串聯式混合型光纖放大器 22 3-1 C-band摻鉺光纖放大器 22 3-2 L-band拉曼光纖放大器 29 3-3 串聯式混合型光纖放大器 36 3-3-1 串聯架構(一) 36 3-3-2 串聯架構(二) 38 3-3-3 串聯架構(三) 40 3-4串聯架構於多通道時之放大 43 第四章 並聯式混合型光纖放大器 50 4-1 並聯式架構 50 4-1-1前言 50 4-1-2並聯架構(一) 51 4-1-3並聯架構(二) 53 4-2 並聯架構(三) 54 4-3 並聯架構(四) 57 4-4 結果與討論 59 4-4-1並聯架構比較 59 4-4-2串聯與並聯架構的比較 61 4-4-3增益箝制技術(Gain clamping,GC) 64 第五章 多特性之混合型光纖放大器研究 69 5-1 拉曼光纖放大器之殘餘色散問題討論 69 5-2多特性之混合型光纖放大器模擬 71 5-2-1模擬架構(一) 71 5-2-2模擬架構(二) 75 5-3 結果與討論 80 第六章 結論與未來展望 82 6-1 結論 82 6-2 未來展望 84 參考文獻 85

    [1] S. Yan, A. K. Srivastava, Z. Jianhui, and J. W. Sulhoff, “Optical fiber amplifiers for WDM-optical networks,” Bell labs Tech. J, vol. 4, no 1, pp. 187-206, January-March, 1999.
    [2] J. Bromage, “Raman amplification for fiber communications systems,” J. Lightwave Technol., vol. 22, pp. 79-93, 2004.
    [3] Y. Aoki,” Properties of fiber Raman amplifiers and their applicability to digital optical communication system,” J. Lightwave Technol., vol. 6, pp. 1225-1239, 1998.
    [4] S. Namiki, ”Recent Advance in Raman Amplifiers,” ECOC’01 Tutorial, October, Amsterdam, pp. 162-181, 2001
    [5] P. C. Becker, N. A. Olsson, and J. R. Simpson, “Erbium-Doped Fiber Amplifiers, Fundamentals and Technology,” Academic Press, 1999.
    [6] J. F. Michel, “Rare-earth-doped fiber lasers and amplifier,” Marcel Dekker, 2001.
    [7] L. Keigo, “Elements of photonics volume II”, Wiley-Interscience, 2002.
    [8] R. S. Tucker and D. M. Baney, “Optical noise figure:Theory and Measurements,” European Conference on Optical Communications (ECOC2000), vol. 3, pp. 1176-1184, 2000.
    [9] R. D. Muro, S. J. Wilson, N. E. Jolley, B. S. Farley, A. Robinson, and J. Mun, “Measurement of the quantum efficiency of long wavelength EDFAs with and without an idler signal,”Optical Fiber Communications Conference, vol. 1, pp. 419- 420, 1999.
    [10] G. P. Agrawal, “ Nonlinear Fiber Optics”, Academic Press, 2001.

    [11] S. h. Wang and C. C. Fan, “Distributed fiber Raman amplifiers: analytical expression of noise characteristics under complex conditions,” Opt. Commun, vol. 198, pp. 65-70, 2001.
    [12] Beshr, A.H. Beshr, M.H. Aly ,” Raman Gain and Raman Gain Coefficient for SiO2, GeO2, B2O3 and P2O5 Glasses,” Radio Science Conference, 2007.
    [13] S. Jiang, B. Bristiel, Y. Jaoun, P. Gallion, E. Pincemin, and S. Capouilliet, "Full characterization of modern transmission fibers for Raman amplified-based communication systems," Opt. Express 15, 4883-4892 (2007)
    [14] 蕭淵隆,”高效益光纖放大器之研製”,台灣科技大學論文,2006
    [15] M. Li, L. Dou, A. Xu, C.-K. Huang, Y.-G. Lai and S.-K. Liaw, “Performance enhancement of C+L band EDFA by recycling the residual pump lasers,”Microwave and Optical Technology Letters. vol. 48, no.10, pp. 1953-1955, 2006.
    [16] C. C. Chen and J. C. Dung, "Broadband Raman amplifier with nonzero dispersion shifted fiber using 6-wavelengths pumping laser," Conference of Optics and Photonics Taiwan, Dec. 18-19, 2004.
    [17] X. Zhou, C. Lu, P. Shum and T.H. Cheng, “A simplified model and optimal design of a multiwave length backward-pumped Raman amplifier,” IEEE Photon. Technol. Lett. vol. 13, pp. 945 – 947, 2001
    [18] S. Namiki and Y. Emori, “100 nm bandwidth flat gain Raman amplifiers pumped and gain-equalized by 12-wavelength-channel WDM high power laser diodes,”Optical Fiber Communication Conference, vol. 39, no. 11, pp. 1444-1451, Atlanta, Georgia, USA. March 2003.
    [19] M. Achtenhagen, T. G. Chang, B. Nyman, and A. Hardy, “Analysis of a multiple-pump Raman amplifier,” Applied Physics Letters vol. 78, pp. 1322, 2001.
    [20] H. Kidorf, K. Rottwitt, M. Nissov, and M. Ma, “Pump interactions in a 100-nm bandwidth Raman amplifier,” IEEE Photon. Technol. Lett. , vol. 12, pp. 1486, 2000.
    [21] J. H. Lee, Y. M. Chang, Y. G. Han, H. Chung, S. H. Kim, H.Y. Chung, and S. B. Lee, “Performance Comparison of Various Configurations of Single-Pump Dispersion-Compensating Raman/EDFA Hybrid Amplifiers,” IEEE Photon. Technol. Lett. vol. 17, 765-767 (2005)
    [22] J. H. Lee, Y. M. Chang, Y. G. Han, S. H. Kim, H. Y. Chung, and S. B. Lee, “Dispersion-compensating Raman/EDFA hybrid amplifier recycling residual Raman pump for efficiency enhancement,” IEEE Photon. Technol. Lett. ,vol. 17, 43-45 (2005).
    [23] S.-K. Liaw ,Y.-S. Huang ,” C+L-band hybrid amplifier using FBGs for dispersion compensation and power equalization ,” Electron. Lett. ,vol. 44 , 844-845 (2008)
    [24] J. D. Ania-Castan, I. O. Nasieva, S. K. Turitsyn, N. Brochier, and E. Pincemin, "Optimal span length in high-speed transmission systems with hybrid Raman-erbium-doped fiber amplification," Opt. Lett. 30, 23-25 (2005)
    [25] H. Masuda, S. Kawai. ,”Wide-band and gain-flattened hybrid fiber amplifier consisting of an EDFA and a multiwavelength pumped Raman amplifier ,” IEEE Photon. Technol. Lett. , vol. 11, pp. 647-649, 2002.
    [26] 張家綸,“具有高增益低雜訊之雙向激發Double-Pass L-band鉺光纖放大器之研究”,清華大學碩士論文, 2005.
    [27] S. Hwang, K. W. Song, H. J. Kwon, J. Koh, Y. J. Oh, and K. Cho, “Broad-band erbium-doped fiber amplifier with double-pass configuration,”IEEE Photon. Technol. Lett. , vol. 13, pp. 1289-1291, 2001.
    [28] 林大維,”拉曼光纖放大器特性改良之研究”,台灣科技大學論文, 2007
    [29] J. C. Dung, "Reflective type Raman amplification for loss compensation in dispersion compensating fiber," Opt. Commun., Vol. 246, pp. 85-89, 2005.
    [30] L. Dou, M. Li, G. Li, A. Xu, D. Lan and S.-K Liaw, “Characteristics improvement of distributed Raman fiber amplifier by using signal/pump double pass scheme,” published in Sept. 2006, Optical Engineering, 2006.
    [31] L. Dou, M. Li, G. Li, A. Xu, D. Lan and S.-K Liaw, “Improvement in characteristics of a distributed Raman fiber amplifier by using signal-pump double-pass scheme,”Optical Engineering, vol. 45, No. 094201, pp.1-4, Sept. 2006. (SCI)
    [32] M. Tong, Y. D. Gong, and P. Shum, “Design of double-pass dispersion-compensated Raman amplifiers for improved efficiency,”J. Lightwave Technol., vol. 22, pp. 1899-1908, 2004.
    [33] J. W. Nicholson, "Dispersion Compensating Raman Amplifiers With Pump Reflectors for Increased Efficiency," J. Lightwave Technol. 21, 1758- (2003)
    [34] M. Zirngibl, “Gain control in erbium-doped fiber amplifiers by an all-optical feedback loop,” Electron. Lett., vol. 27, pp. 560–561, 1991
    [35] Z. Yuxing , J. Bryce,R. Minasian , “Gain Clamped Erbium-Doped Fiber Amplifiers—Modeling and Experiment,” Selected Topics in Quantum Electronics , Vol. 3, pp. 1008-1012 , 1997

    [36] Q. Yu and C.C. Fan, "Simple Dynamic Model of All-Optical Gain-Clamped Erbium-Doped Fiber Amplifiers," J. Lightwave Technol. ,vol.17, 1166- (1999)
    [37] L. Yi, L. Zhan, W. Hu, Q. Tang, and Y. Xia, "Tunable gain-clamped double-pass Erbium-doped fiber amplifier," Opt. Express, vol 14, 570-574 (2006)
    [38] S.-K. Liaw, L. Dou and A. Xu, “Fiber-Bragg-grating -based dispersion- compensated and gain-flattened Raman fiber amplifier,”Opt. Express, vol.19, no. 15, pp. 12356-12361, 2007.
    [39] J. C. Dung, S. Chi, and S. Wen, " Gain Flattened of an Erbium Doped Fiber Amplifier by Using Fiber Bragg Gratings," Electon. Lett., Vol. 34, pp. 555-556, 1998.

    QR CODE