研究生: |
馮政欽 JENG-CHIN FENG |
---|---|
論文名稱: |
矽線環形共振器於色散補償應用 Dispersion Compensation Using Silicon Wire Microring Resonators |
指導教授: |
徐世祥
Shih-Hsiang Hsu |
口試委員: |
李三良
San-Liang Lee 廖顯奎 Shien-Kuei Liaw 譚昌文 Chen-Wen Tarn |
學位類別: |
碩士 Master |
系所名稱: |
電資學院 - 電子工程系 Department of Electronic and Computer Engineering |
論文出版年: | 2014 |
畢業學年度: | 102 |
語文別: | 中文 |
論文頁數: | 107 |
中文關鍵詞: | 環形共振器 、色散補償 |
外文關鍵詞: | Microring Resonators, Dispersion Compensation |
相關次數: | 點閱:422 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
絕緣層上覆矽波導具有高效率與高品質的特性而且成本低,加上其相容於金屬氧化物半導體標準製程,故常廣泛應用於高速、低功率消耗的光電元件。另外,矽與埋藏氧化層之間的高折射率差,使得矽波導能縮至次微米等級,故以矽線波導設計之環形共振器,可具高積體化光路與高品質因子,常被使用為光通訊元件。
環形共振器由於尺寸小、性能優良已成為積體光學領域的重要元件。環形共振器可用很小的尺寸實現很大的色散補償,它在色散補償器方面的應用受到重視。本文通過對環形共振器中光場關係的推導,首先計算分析了常見結構的色散特性,指出耦合係數和環長是決定色散補償的主要參數。對補償色散量和自由光譜範圍進行了綜合優化,給出了優化色散補償器設計的方式。本論文利用馬赫詹德方向耦合器環形共振器多通道特性進行色散補償提供了參考。
光纖色散是限制光信號傳輸品質和距離的主要因素之一,動態色散補償是高速光通信系統中迫切需要解決的問題。色散量測技術是動態色散補償系統的關鍵。對兩種基於信號頻譜的色散量測技術、特點及其實現進行了分析比較。
本論文對於色散量測方式有兩種,分別量測範圍 680 ps/nm、 2000 ps/nm,並以矽線波導製作馬赫詹德方向耦合器的環形共振器進行色散補償,馬赫詹德方向耦合器耦合方式的環形共振器最高補償值 1500 ps/nm。
A silicon-on-insulator based waveguide platform has demonstrated its fully compatible processing with the complementary metal-oxide-semiconductor (CMOS) standard process besides the high efficiency, high quality and low cost. Therefore, it is extensively utilized to construct the optoelectronic devices for the applications of higher speed and lower power consumption. Moreover, the large refractive index difference between silicon and silicon dioxide layers can significantly reduce the waveguide size to submicron scale, named as the silicon wire. Then the optical microring resonator (MRR) with its high quality factor owns the potential of highly integrated photonic circuits for optical communications.
Due to the small footprint and excellent optical performance, the MRR has become an important device unit in integrated photonics and is attractive in dispersion compensation applications. In this thesis, the chromatic dispersion (CD) characterization of MRR is analyzed using the optical power transmission derivation. There are two main factors in determining CD, the microring coupling coefficient and its circumstance. The CD value, bandwidth, and free spectral range from MRR are analytically illustrated for CD compensation.
Fiber dispersion is one of the main factors limiting the optical signal transmission quality and distance. The dynamic CD compensation for high-speed optical communication systems is an urgent need to resolve this issue. An accurate CD characterization technique is crucial to precisely manipulating CD compensation. In the broadband coupling consideration, the Mach-Zehnder directional coupler (MZDC) will be designed and implemented on MRR for wavelength division multiplexing (WDM) CD compensation. In this thesis, the CD monitoring by delayed Mach-Zehnder interferometer and CD compensation using MZDC coupled MRR will be utilized to demonstrate the 50-GHz free spectrum range (FSR) of MRR and 1500 ps/nm.
[1] S. Matsuo, S. H. Jeong, T. Segawa, H. Okamoto, Y. Kawaguchi, Y. Kondo, H. Suzuki, and Y.Yoshikuni, "Digitally tunable ring laser using ladder filter and ring resonator," IEEE Journal of Selected Topics in Quantum Electronics, vol. 11, no. 5, pp. 924-930, 2005.
[2] R. Grover, V. Van, T. A. Ibrahim, P. P. Absil, L. C. Calhoun, F. G. Johnson, J. V. Hryniewicz, and P. T. Ho, "Parallel-cascaded semiconductor microring resonators for high-order and wide-FSR filters," Journal of Lightwave Technology, vol. 20, no. 5, pp. 900-905, 2002.
[3] Y. Li, L. Zhang, M. Song, B. Zhang, J. Y. Yang, R. G. Beausoleil, A. E. Willner, and P. D. Dapkus, "Coupled-ring-resonator-based silicon modulator for enhanced performance," Optics Express, vol. 16, no. 17, pp. 13342-13348, 2008.
[4] S.-J. Chang, C.-Y. Ni, Z. Wang, and Y. J. Chen, "A compact and low power consumption optical switch based on microrings," IEEE Photonics Technology Letters, vol. 20, no. 12, pp. 1021-1023, 2008.
[5] H. Takahashi, R. Inohara, K. Nishimura, and M. Usami, "Expansion of bandwidth of tunable dispersion compensator based on ring resonators utilizing negative group delay," Journal of Lightwave Technology, vol. 24, no. 6, pp. 2276, 2006.
[6] C. Madsen, G. Lenz, A. Bruce, M. Capuzzo, L. Gomez, T. Nielsen, and I. Brener, "Multistage dispersion compensator using ring resonators," Optics Letters, vol. 24, no. 22, pp. 1555-1557, 1999.
[7] F. Morichetti, A. Melloni, A. Breda, A. Canciamilla, C. Ferrari, and M. Martinelli, "A reconfigurable architecture for continuously variable optical slow-wave delay lines," Optics Express, vol. 15, no. 25, pp. 17273-17282, 2007.
[8] H. Zhou, X. Jiang, J. Yang, Q. Zhou, T. Yu, and M. Wang, "Wavelength-selective optical waveguide isolator based on nonreciprocal ring-coupled Mach–Zehnder interferometer," Journal of Lightwave Technology, vol. 26, no. 17, pp. 3166-3172, 2008.
[9] M. T. Hill, H. J. S. Dorren, T. D. Vries, X. J. M. Leijtens, J. H. D. Besten, B. Smalbrugge, Y. S. Oei, H. Binsma, G. D. Khoe, and M. K. Smit, "A fast low-power optical memory based on coupled micro-ring lasers," Nature, vol. 432, no. 11, pp. 206-209, 2004.
[10] A. Maxwell, S.-W. Huang, T. Ling, J.-S. Kim, S. Ashkenazi, and L. Jay Guo, "Polymer microring resonators for high-frequency ultrasound detection and imaging," IEEE Journal of Selected Topics in Quantum Electronics, vol. 14, no. 1, pp. 191-197, 2008.
[11] J. K. Poon, J. Scheuer, and A. Yariv, "Wavelength-selective reflector based on a circular array of coupled microring resonators," IEEE Photonics Technology Letters, vol. 16, no. 5, pp. 1331-1333, 2004.
[12] J. Scheuer and A. Yariv, "Sagnac effect in coupled-resonator slow-light waveguide structures," Physical Review Letters, vol. 96, no. 5, pp. 053901, 2006.
[13] L. G. Nielsen, S. N. Knudsen, B. Edvold, T. Veng, D. Magnussen, C. C. Larsen, and H. Damsgaard, "Dispersion compensating fibers," Optical Fiber Technology, vol. 6, pp. 164-180, 2000.
[14] R. Nogueira, A. Teixeira, M. Lima, P. Andre, J. Pinto, and J. D. Rocha, "Tunable dispersion compensator and tunable dispersion slope compensator based on induced thermal chirping in fiber Bragg gratings," 7th International Conference on Transparent Optical Networks, vol. 2, pp. 343-346, 2005.
[15] P. I. Reyes, N. Litchinitser, M. Sumetsky, and P. S. Westbrook, "160-Gb/s tunable dispersion slope compensator using a chirped fiber Bragg grating and a quadratic heater," IEEE Photonics Technology Letters, vol. 17, no. 4, pp. 831-833, 2005.
[16] C. K. Madsen, G. Lenz, A. J. Bruce, M. A. Capuzzo, L. T. Gomez, T. N. Nielsen, and I. Brener, "Multistage dispersion compensator using ring resonators," Optics Letters, vol. 24, no. 22, pp. 1555-1557, 1999.
[17] H. Ooi, K. Nakamura, Y. Akiyama, T. Takahara, T. Terahara, Y. Kawahata, H. Isono, and G. Ishikawa, "40-Gb/s WDM transmission with virtually imaged phased array (VIPA) variable dispersion compensators," Journal of Lightwave Technology, vol. 20, no. 12, pp. 2196-2203, 2002.
[18] R. A. Soref, J. Schmidtchen, and K. Petermann, "Large single-mode rib waveguides in GeSi-Si and Si-on-SiO2," IEEE Journal of Quantum Electronics, vol. 27, no. 8, pp. 1971-1974, 1991.
[19] S. P. Chan, C. E. Png, S. T. Lim, G. T. Reed, and V. M. Passaro, "Single-mode and polarization-independent silicon-on-insulator waveguides with small cross section," Journal of Lightwave Technology, vol. 23, no. 6, pp. 2103-2111, 2005.
[20] T. Aalto, Microphotonic silicon waveguide components: VTT Technical Research Centre of Finland, 2004.
[21] K. W. Ang and G. Q. L. Patrick, "Si charge avalanche enhances APD sensitivity beyond 100 GHz," Laser Focus World, vol. 46, no. 8, 2010.
[22] P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. V. Campenhout, D. T Taillaert, B. Luyssaert, P. Bienstman, D. V. Thourhout and R. Baets, "Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography," IEEE Photonics Technology Letters, vol. 16, no. 5, pp. 1328-1330, 2004.
[23] Y. Hibino, "Recent advances in high-density and large-scale AWG multi/demultiplexers with higher index-contrast silica-based PLCs," IEEE Journal of Selected Topics in Quantum Electronics, vol. 8, no. 6, pp. 1090-1101, 2002.
[24] A. Sakai, H. Go, and T. Baba, "Sharply bent optical waveguide silicon-on-insulator substrate," Symposium on Integrated Optics, vol. 4283, pp. 610-618, 2001.
[25] E. Marcatili, "Bends in optical dielectric guides," Bell System Technical Journal, vol. 48, no. 25, pp. 2103-2132, 1969.
[26] M. Heiblum and J. H. Harris, "Analysis of curved optical waveguides by conformal transformation," IEEE Journal of Quantum Electronics, vol. 11, no. 2, pp. 75-83, 1975.
[27] Y. Vlasov and S. McNab, "Losses in single-mode silicon-on-insulator strip waveguides and bends," Optics Express, vol. 12, no. 8, pp. 1622-1631, 2004.
[28] V. Subramaniam, G. N. De Brabander, D. H. Naghski, and J. T. Boyd, "Measurement of mode field profiles and bending and transition losses in curved optical channel waveguides," Journal of Lightwave Technology, vol. 15, no. 6, pp. 990-997, 1997.
[29] K. K. Lee, D. R. Lim, H. C. Luan, A. Agarwal, J. Foresi, and L. C. Kimerling, "Effect of size and roughness on light transmission in a Si/SiO2 waveguide: Experiments and model," Applied Physics Letters, vol. 77, no. 11, pp. 1617-1619, 2000.
[30] D. Marcuse, "Mode conversion caused by surface imperfections of a dielectric slab waveguide," Bell System Technical Journal, vol. 48, pp. 3187-3215, 1969.
[31] F. Payne and J. Lacey, "A theoretical analysis of scattering loss from planar optical waveguides," Optical and Quantum Electronics, vol. 26, pp. 977-986, 1994.
[32] F. Grillot, L. Vivien, S. Laval, D. Pascal, and E. Cassan, "Size influence on the propagation loss induced by sidewall roughness in ultrasmall SOI waveguides," IEEE Photonics Technology Letters, vol. 16, no. 7, pp. 1661-1663, 2004.
[33] 蔡祐立,單一絕緣層覆矽板上之多模干涉與方向耦合功能為主的分光功率器,國立台灣科技大學,台北,2009.
[34] D. X. Xu, A. Densmore, P. Waldron, J. Lapointe, E. Post, A. DelOge, S. Janz, P. Cheben, J. H. Schmid and B. Lamontagne, "High bandwidth SOI photonic wire ring resonators using MMI couplers," Optics Express, vol. 15, no. 6, pp. 3149-3155, 2007.
[35] H. Yamada, T. Chu, S. Ishida, and Y. Arakawa, "Optical directional coupler based on Si-wire waveguides," IEEE Photonics Technology Letters, vol. 17, no. 3, pp. 585-587, 2005.
[36] G. Ducournau, O. Latry, and M. Ketata, "The All-fiber MZI Structure for Optical DPSK Demodulation and Optical PSBT Encoding," Journal of Systemics, Cybernetics and Informatics, vol. 4, no. 4, pp. 78-89, 2006.
[37] S. H. Hsu, "Signal power tapped with low polarization dependence and insensitive wavelength on silicon-on-insulator platforms," Journal of the Optical Society of America B, vol. 27, no. 5, pp. 941-947, 2010.
[38] B. E. Little and T. Murphy, "Design rules for maximally flat wavelength insensitive optical power dividers using Mach-Zehnder structures," IEEE Photonics Technology Letters, vol. 9, no. 12, pp. 1607-1609, 1997.
[39] A. Yariv and P. Yeh, Photonics: optical electronics in modern communications, Sixth Edition, Oxford University Press, Inc., 2007.
[40] F. Gires and P. Tournois, "Interferometre utilisable pour la compression d'impulsions lumineuses modulees en frequence," C. R. Acad. Sci. 258, group 5, pp. 6112–6115, 1964.
[41] L. Fabry and A. Perot, "A multipass interferometer," Annales de Chimie et de Physique, vol.16, no. 115, 1899.
[42] A. Morand, Y. Zhang, B. Martin, K. Phan Huy, D. Amans, P. Benech, J. Verbert, E. Hadji, and J. M. Fedeli, "Ultra-compact microdisk resonator filters on SOI substrate," Optics Express, vol. 14, no. 26, pp. 12814-12821, 2006.
[43] F. Xia, L. Sekaric, and Y. A. Vlasov, "Mode conversion losses in silicon-on-insulator photonic wire based racetrack resonators," Optics Express, vol. 14, no. 9, pp. 3872-3886, 2006.
[44] C. Li, L. Zhou, S. Zheng, and A. W. Poon, "Silicon polygonal microdisk resonators," IEEE Journal of Selected Topics in Quantum Electronics, vol. 12, no. 6, pp. 1438-1449, 2006.
[45] K. Kieu and M. Mansuripur, "Fiber laser using a microsphere resonator as a feedback element," Optics Letters, vol. 32, no. 3, pp. 244-246, 2007.
[46] W. Suh, Z. Wang, and S. Fan, "Temporal coupled-mode theory and the presence of non-orthogonal modes in lossless multimode cavities," IEEE Journal of Quantum Electronics, vol. 40, no. 10, pp. 1511-1518, 2004.
[47] J. Capmany and M. A. Muriel, "A new transfer matrix formalism for the analysis of fiber ring resonators: compound coupled structures for FDMA demultiplexing," Journal of Lightwave Technology, vol. 8, no. 12, pp. 1904-1919, 1990.
[48] S. Lau, T. Shiraishi, and J. M. Ballantyne, "Scattering matrix analysis of a triangular ring laser," Journal of Lightwave Technology, vol. 12, no. 2, pp. 202-207, 1994.
[49] F. Sanchez, "Matrix algebra for all-fiber optical resonators," Journal of Lightwave Technology, vol. 9, no. 7, pp. 838-844, 1991.
[50] A. Yariv, "Universal relations for coupling of optical power between microresonators and dielectric waveguides," Electronics Letters, vol. 36, no. 4, pp. 321-322, 2000.
[51] D. X. Xu, A. Densmore, P. Waldron, J. Lapointe, E. Post, A. DelOge, S. Janz, P. Cheben, J. H. Schmid and B. Lamontagne, "High bandwidth SOI photonic wire ring resonators using MMI couplers," Optics Express, vol. 15, no. 6, pp. 3149-3155, 2007.
[52] D. X. Xu, P. Cheben, A. Delage, S. Janz, B. Lamontagne, E. Post, and W. N. Ye, "Polarization-insensitive MMI-coupled ring resonators in silicon-on-insulator using cladding stress engineering," Integrated Optoelectronic Devices, vol. 6477, pp. 64770D-64770D-11, 2007.
[53] H. Shen, J. P. Chen, X. W. Li, and Y. P. Wang, "Group delay and dispersion analysis of compound high order microring resonator all-pass filter," Optics Communications, vol. 262, pp. 200-205, 2006.
[54] S. Kuwahara, A. Sano, K. Yonenaga, Y. Miyamoto, and Y. Yamabayashi, "Adaptive dispersion equalization by detecting dispersion fluctuations using PM-AM conversion," Electronics Letters, vol. 34, no. 20, pp. 1956–1958, 1998.
[55] T. E. Dimmick, G. Rossi, and D. J. Blumenthal, "Optical dispersion monitoring technique using double sideband subcarriers," IEEE Photonics Technology Letters, vol. 12, no. 7, pp. 900–902, 2000.
[56] S. Ohteru and N. Takachio, "Optical signal quality monitor using direct Q-factor measurement," IEEE Photonics Technology Letters, vol. 11, no. 10, pp. 1307–1309, 1999.
[57] I. Shake, H. Takara, K. Uchiyama, and Y. Yamabayashi, "Quality monitoring of optical signals influenced by chromatic dispersion in a transmission fiber using averaged Q-factor evaluation," IEEE Photonics Technology Letters, vol. 13, no. 4, pp. 385–387, 2001.
[58] Q. Yu, Z. Pan, L. S. Yan, and A. E. Willner, "Chromatic dispersion monitoring technique using sideband optical filtering and clock phase-shift detection," Journal of Lightwave Technology, vol. 20, no. 12, pp. 2267–2271, 2002.
[59] Z. Pan, Y. Xie, S. A. Havstad, Q. Yu, A. E. Willner, V. Grubsky, D. S. Starodubov, and J. Feinberg, "Real-time group velocity dispersion monitoring and automated compensation without modifications of the transmitter," Optical Communication, vol. 230, pp. 145–149, 2004.
[60] Y. C. Ku, C. K. Chan and L. K. Chen, "Chromatic dispersion monitoring technique using birefringent fiber loop," Optical Fiber Communication Conference and the National Fiber Optic Engineers, 2006.
[61] P. S. Westbrook, B. J. Eggleton, G. Raybon, S. Hunsche, and T. H. Her, "Measurement of residual chromatic dispersion of a 40-Gb/s RZ signal via spectral broadening," IEEE Photonics Technology Letters, vol. 14, no. 3, pp. 346-348, 2002.
[62] P. S. Westbrook, T. H. Her, B. J. Eggleton, S. Hunsche, and G. Raybon, "Measurement of pulse degradation using all-optical 2R regenerator," Electronics Letters, vol. 38, no. 20, pp. 1193-1194, 2002.
[63] L. Shenping, and D. V. Kuksenkov, "A novel dispersion monitoring technique based on four-wave mixing in optical fiber," IEEE Photonics Technology Letters, vol. 16, no. 3, pp. 942-944, 2004.
[64] Wu, Zhao, Yu Yu, and Xinliang Zhang. "Chromatic dispersion monitoring using four wave mixing of semiconductor optical amplifier," 12th International Conference on Optical Communications and Networks, 2013.
[65] Wielandy, Stephan, Michael Fishteyn, and Benyuan Zhu, "Optical performance monitoring using nonlinear detection," Journal of Lightwave Technology, vol. 22, no. 3, pp. 784, 2004.
[66] Z. Pan, Q. Yu, Y. Xie, S. Havstad, A. Willner, D. Starodubov, et al., "Chromatic dispersion monitoring and automated compensation for NRZ and RZ data using clock regeneration and fading without adding signaling," in Proc. Optical Fiber Communication Conference and Exhibit, vol. 3, 2001.
[67] Q. Yu, Z. Pan, L. S. Yan, and A. E. Willner, "Chromatic Dispersion Monitoring Technique Using Sideband Optical Filtering and Clock Phase-Shift Detection," Journal of Lightwave Technology, vol. 20, no. 12, p. 2267, 2002.
[68] M. N. Petersen, Z. Pan, S. Lee, S. Havstad, and A. Willner, "Online chromatic dispersion monitoring and compensation using a single inband subcarrier tone," Photonics Technology Letters, IEEE, vol. 14, no. 4, pp. 570-572, 2002.
[69] K. Park, C. Youn, J. Lee, and Y. Chung, "Performance comparisons of chromatic dispersion-monitoring techniques using pilot tones," IEEE Photonics Technology Letters, vol. 15, no. 6, pp. 873-875, 2003.
[70] A. L. Campillo, "Chromatic dispersion-monitoring technique based on phase sensitive detection," IEEE Photonics Technology Letters, vol. 17, no. 6, pp. 1241-1243, 2005.